Enhancing Eigenvalue Approximation by Gradient Recovery

The polynomial preserving recovery (PPR) is used to enhance the finite element eigenvalue approximation. Remarkable fourth order convergence is observed for linear elements under structured meshes as well as unstructured initial meshes (produced by the Delaunay triangulation) with the conventional bisection refinement.

[1]  Ahmed Naga,et al.  THE POLYNOMIAL-PRESERVING RECOVERY FOR HIGHER ORDER FINITE ELEMENT METHODS IN 2D AND 3D , 2005 .

[2]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[3]  Ricardo H. Nochetto,et al.  Small data oscillation implies the saturation assumption , 2002, Numerische Mathematik.

[4]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[5]  F. Chatelin The Spectral Approximation of Linear Operators with Applications to the Computation of Eigenelements of Differential and Integral Operators , 1981 .

[6]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[7]  Zhimin Zhang,et al.  A Posteriori Error Estimates Based on the Polynomial Preserving Recovery , 2004, SIAM J. Numer. Anal..

[8]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[9]  Jinchao Xu,et al.  A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..

[10]  Aihui Zhou,et al.  A Defect Correction Scheme for Finite Element Eigenvalues with Applications to Quantum Chemistry , 2006, SIAM J. Sci. Comput..

[11]  Zhimin Zhang,et al.  Analysis of recovery type a posteriori error estimators for mildly structured grids , 2003, Math. Comput..

[12]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[13]  Zhimin Zhang POLYNOMIAL PRESERVING GRADIENT RECOVERY AND A POSTERIORI ESTIMATE FOR BILINEAR ELEMENT ON IRREGULAR QUADRILATERALS , 2004 .

[14]  Zhimin Zhang,et al.  A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..