Enhancing Eigenvalue Approximation by Gradient Recovery
暂无分享,去创建一个
[1] Ahmed Naga,et al. THE POLYNOMIAL-PRESERVING RECOVERY FOR HIGHER ORDER FINITE ELEMENT METHODS IN 2D AND 3D , 2005 .
[2] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .
[3] Ricardo H. Nochetto,et al. Small data oscillation implies the saturation assumption , 2002, Numerische Mathematik.
[4] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[5] F. Chatelin. The Spectral Approximation of Linear Operators with Applications to the Computation of Eigenelements of Differential and Integral Operators , 1981 .
[6] I. Babuska,et al. The finite element method and its reliability , 2001 .
[7] Zhimin Zhang,et al. A Posteriori Error Estimates Based on the Polynomial Preserving Recovery , 2004, SIAM J. Numer. Anal..
[8] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .
[9] Jinchao Xu,et al. A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..
[10] Aihui Zhou,et al. A Defect Correction Scheme for Finite Element Eigenvalues with Applications to Quantum Chemistry , 2006, SIAM J. Sci. Comput..
[11] Zhimin Zhang,et al. Analysis of recovery type a posteriori error estimators for mildly structured grids , 2003, Math. Comput..
[12] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[13] Zhimin Zhang. POLYNOMIAL PRESERVING GRADIENT RECOVERY AND A POSTERIORI ESTIMATE FOR BILINEAR ELEMENT ON IRREGULAR QUADRILATERALS , 2004 .
[14] Zhimin Zhang,et al. A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..