Strong coupling between a microwave photon and a singlet-triplet qubit

Tremendous progress in few-qubit quantum processing has been achieved lately using superconducting resonators coupled to gate voltage defined quantum dots. While the strong coupling regime has been demonstrated recently for odd charge parity flopping mode spin qubits, first attempts towards coupling a resonator to even charge parity singlet-triplet spin qubits have resulted only in weak spin-photon coupling strengths. Here, we integrate a zincblende InAs nanowire double quantum dot with strong spin-orbit interaction in a magnetic-field resilient, high-quality resonator. In contrast to conventional strategies, the quantum confinement is achieved using deterministically grown wurtzite tunnel barriers without resorting to electrical gating. Our experiments on even charge parity states and at large magnetic fields, allow to identify the relevant spin states and to measure the spin decoherence rates and spin-photon coupling strengths. Most importantly, we find an anti-crossing between the resonator mode in the single photon limit and a singlet-triplet qubit with an electron spin-photon coupling strength of $g/2\pi=139\pm4$ MHz. Combined with the resonator decay rate $\kappa/2\pi=19.8\pm0.2$ MHz and the qubit dephasing rate $\gamma/2\pi=116\pm7$ MHz, our system achieves the strong coupling regime in which the coherent coupling exceeds qubit and resonator linewidth. These results pave the way towards large-scale quantum system based on singlet-triplet qubits.

[1]  C. Schonenberger,et al.  Performance of high impedance resonators in dirty dielectric environments , 2023, 2302.06303.

[2]  M. Vinet,et al.  Strong coupling between a photon and a hole spin in silicon , 2022, Nature Nanotechnology.

[3]  G. Burkard,et al.  Semiconductor spin qubits , 2021, Reviews of Modern Physics.

[4]  L. Wernersson,et al.  High-density logic-in-memory devices using vertical indium arsenide nanowires on silicon , 2021, Nature Electronics.

[5]  L. Vandersypen,et al.  Coherent Spin-Spin Coupling Mediated by Virtual Microwave Photons , 2021, Physical Review X.

[6]  G. Burkard,et al.  All-electrical control of hole singlet-triplet spin qubits at low-leakage points , 2021, Physical Review B.

[7]  M. Manfra,et al.  Parametric longitudinal coupling between a high-impedance superconducting resonator and a semiconductor quantum dot singlet-triplet spin qubit , 2021, Nature Communications.

[8]  J. Koski,et al.  In situ Tuning of the Electric-Dipole Strength of a Double-Dot Charge Qubit: Charge-Noise Protection and Ultrastrong Coupling , 2021, Physical Review X.

[9]  J. Petta,et al.  Probing the Variation of the Intervalley Tunnel Coupling in a Silicon Triple Quantum Dot , 2021, PRX Quantum.

[10]  M. Vinet,et al.  Dispersively Probed Microwave Spectroscopy of a Silicon Hole Double Quantum Dot , 2020, Physical Review Applied.

[11]  Jordi Arbiol,et al.  A singlet-triplet hole spin qubit in planar Ge , 2020, Nature Materials.

[12]  C. Urbina,et al.  From Adiabatic to Dispersive Readout of Quantum Circuits. , 2020, Physical review letters.

[13]  A. Morello,et al.  Semiconductor qubits in practice , 2020, Nature Reviews Physics.

[14]  L. Vandersypen,et al.  On-Chip Microwave Filters for High-Impedance Resonators with Gate-Defined Quantum Dots , 2020, Physical Review Applied.

[15]  M. F. Gonzalez-Zalba,et al.  Large Dispersive Interaction between a CMOS Double Quantum Dot and Microwave Photons , 2020, PRX Quantum.

[16]  D. Loss,et al.  Magnetic-Field-Independent Subgap States in Hybrid Rashba Nanowires. , 2020, Physical review letters.

[17]  J. R. Petta,et al.  Long-Range Microwave Mediated Interactions Between Electron Spins , 2019 .

[18]  V. Maisi,et al.  Individually addressable double quantum dots formed with nanowire polytypes and identified by epitaxial markers , 2019, Applied Physics Letters.

[19]  M. Vinet,et al.  Gate-reflectometry dispersive readout and coherent control of a spin qubit in silicon , 2018, Nature Communications.

[20]  J. Koski,et al.  Microwave-Cavity-Detected Spin Blockade in a Few-Electron Double Quantum Dot. , 2018, Physical review letters.

[21]  Werner Wegscheider,et al.  Microwave Photon-Mediated Interactions between Semiconductor Qubits , 2018, Physical Review X.

[22]  E. Rico,et al.  Ultrastrong coupling regimes of light-matter interaction , 2018, Reviews of Modern Physics.

[23]  K. Dick,et al.  Tuning the Two-Electron Hybridization and Spin States in Parallel-Coupled InAs Quantum Dots. , 2018, Physical review letters.

[24]  K. Dick,et al.  Parallel-Coupled Quantum Dots in InAs Nanowires. , 2017, Nano letters.

[25]  N. Kalhor,et al.  Strong spin-photon coupling in silicon , 2017, Science.

[26]  A. Wallraff,et al.  Coherent spin–photon coupling using a resonant exchange qubit , 2017, Nature.

[27]  Peter D. Nissen,et al.  Spin of a Multielectron Quantum Dot and Its Interaction with a Neighboring Electron , 2017, 1710.10012.

[28]  Jacob M. Taylor,et al.  A coherent spin–photon interface in silicon , 2017, Nature.

[29]  X Mi,et al.  High-Resolution Valley Spectroscopy of Si Quantum Dots. , 2017, Physical review letters.

[30]  J. R. Petta,et al.  Strong coupling of a single electron in silicon to a microwave photon , 2017, Science.

[31]  Werner Wegscheider,et al.  Strong Coupling Cavity QED with Gate-Defined Double Quantum Dots Enabled by a High Impedance Resonator , 2017, 1701.03433.

[32]  Hillsboro,et al.  Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent , 2016, 1612.05936.

[33]  J. R. Petta,et al.  Circuit quantum electrodynamics architecture for gate-defined quantum dots in silicon , 2016, 1610.05571.

[34]  R. McDermott,et al.  Optimizing microwave photodetection: input–output theory , 2016, 1609.08887.

[35]  Clement H. Wong,et al.  Quantum efficiency of a single microwave photon detector based on a semiconductor double quantum dot , 2015, 1512.06939.

[36]  K. Dick,et al.  Single-electron transport in InAs nanowire quantum dots formed by crystal phase engineering , 2015, 1512.06887.

[37]  L. DiCarlo,et al.  High Kinetic Inductance Superconducting Nanowire Resonators for Circuit QED in a Magnetic Field , 2015, 1511.01760.

[38]  C. Naud,et al.  Kerr coefficients of plasma resonances in Josephson junction chains , 2015, 1505.05845.

[39]  K. Dick,et al.  A general approach for sharp crystal phase switching in InAs, GaAs, InP, and GaP nanowires using only group V flow. , 2013, Nano letters.

[40]  J. Petta,et al.  Radio frequency charge parity meter. , 2012, Physical review letters.

[41]  Jacob M. Taylor,et al.  Circuit quantum electrodynamics with a spin qubit , 2012, Nature.

[42]  M. Beck,et al.  Dipole coupling of a double quantum dot to a microwave resonator. , 2011, Physical review letters.

[43]  A. Dey,et al.  Effects of crystal phase mixing on the electrical properties of InAs nanowires. , 2011, Nano letters.

[44]  A. Palacios-Laloy Superconducting qubit in a resonator : test of the Legget-Garg inequality and single-shot readout , 2010 .

[45]  L. Bishop Circuit quantum electrodynamics , 2010, 1007.3520.

[46]  E. Bakkers,et al.  Disentangling the effects of spin-orbit and hyperfine interactions on spin blockade , 2010, 1002.2120.

[47]  S. Chumakov,et al.  The Jaynes–Cummings Model , 2009 .

[48]  D. Loss,et al.  Spin dynamics in InAs nanowire quantum dots coupled to a transmission line , 2007, 0708.2091.

[49]  D. Loss,et al.  Direct measurement of the spin-orbit interaction in a two-electron InAs nanowire quantum dot. , 2007, Physical review letters.

[50]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[51]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[52]  C. Gardiner,et al.  Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics , 2004 .

[53]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[54]  M. Lukin,et al.  Mesoscopic cavity quantum electrodynamics with quantum dots , 2003, quant-ph/0309106.

[55]  S. Tarucha,et al.  Electron transport through double quantum dots , 2002, cond-mat/0205350.

[56]  K. Fobelets,et al.  In situ Raman spectroscopy of the selective etching of antimonides in GaSb/AlSb/InAs heterostructures , 1998 .

[57]  Direct Measurement , 2021, Encyclopedic Dictionary of Archaeology.

[58]  J. Verduijn Silicon Quantum Electronics , 2012 .

[59]  J. Evans,et al.  in Silicon , 2022 .