Magnetic resonance diffusion and relaxation characterization of water in the unfrozen vein network in polycrystalline ice and its response to microbial metabolic products.

[1]  A Contribution to the Study of the Glacier Grain , 1949 .

[2]  Carl Wagner,et al.  Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald‐Reifung) , 1961, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie.

[3]  I. Lifshitz,et al.  The kinetics of precipitation from supersaturated solid solutions , 1961 .

[4]  P. Hobbs,et al.  An experimental determination of the surface energies of ice , 1969 .

[5]  R. Mills,et al.  Self-diffusion in normal and heavy water in the range 1-45.deg. , 1973 .

[6]  M. Kahlweit,et al.  Ostwald ripening of precipitates , 1975 .

[7]  C. Richardson Phase Relationships in Sea Ice as a Function of Temperature , 1976 .

[8]  A. Brailsford,et al.  The dependence of ostwald ripening kinetics on particle volume fraction , 1979 .

[9]  K. Brownstein,et al.  Importance of classical diffusion in NMR studies of water in biological cells , 1979 .

[10]  L. Reichl A modern course in statistical physics , 1980 .

[11]  P. N. Sen,et al.  A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads , 1981 .

[12]  P. Voorhees,et al.  Ostwald ripening during liquid phase sintering—Effect of volume fraction on coarsening kinetics , 1984 .

[13]  Joel Keizer,et al.  Statistical Thermodynamics of Nonequilibrium Processes , 1987 .

[14]  J. F. Nye,et al.  The Geometry of Water Veins and Nodes in Polycrystalline Ice , 1989, Journal of Glaciology.

[15]  A. Caprihan,et al.  Flow measurements by NMR , 1990 .

[16]  P. Callaghan Principles of Nuclear Magnetic Resonance Microscopy , 1991 .

[17]  P. Callaghan,et al.  Diffraction-like effects in NMR diffusion studies of fluids in porous solids , 1991, Nature.

[18]  NMR imaging of salt-water ice , 1991 .

[19]  Schwartz,et al.  Diffusion propagator as a probe of the structure of porous media. , 1992, Physical review letters.

[20]  Observations of the water-vein system in polycrystalline ice. , 1992 .

[21]  Partha P. Mitra,et al.  Time-Dependent Diffusion Coefficient of Fluids in Porous Media as a Probe of Surface-to-Volume Ratio , 1993 .

[22]  Schwartz,et al.  Short-time behavior of the diffusion coefficient as a geometrical probe of porous media. , 1993, Physical review. B, Condensed matter.

[23]  Karl G. Helmer,et al.  Restricted Diffusion in Sedimentary Rocks. Determination of Surface-Area-to-Volume Ratio and Surface Relaxivity , 1994 .

[24]  A. Bray Theory of phase-ordering kinetics , 1994, cond-mat/9501089.

[25]  Muhammad Sahimi,et al.  Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches , 1995 .

[26]  R. L. Sutton,et al.  Kinetics of Ice Recrystallization in Aqueous Fructose Solutions , 1996 .

[27]  Hürlimann,et al.  Effective Gradients in Porous Media Due to Susceptibility Differences , 1998, Journal of magnetic resonance.

[28]  C P McKay,et al.  Perennial Antarctic lake ice: an oasis for life in a polar desert. , 1998, Science.

[29]  Robin Dykstra,et al.  A nuclear magnetic resonance study of Antarctic sea ice brine diffusivity , 1999 .

[30]  S. Patz,et al.  Probing porous media with gas diffusion NMR. , 1999, Physical review letters.

[31]  C. McKay,et al.  Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. , 1999, Science.

[32]  William S. Price,et al.  Self-Diffusion of Supercooled Water to 238 K Using PGSE NMR Diffusion Measurements , 1999 .

[33]  C. Hew,et al.  Structure, function and evolution of antifreeze proteins , 1999, Cellular and Molecular Life Sciences CMLS.

[34]  Stapf,et al.  NMR characterization of the pore structure and anisotropic self-diffusion in salt water Ice , 2000, Journal of magnetic resonance.

[35]  K. E. Zachariassen,et al.  Ice nucleation and antinucleation in nature. , 2000, Cryobiology.

[36]  P. Price A habitat for psychrophiles in deep Antarctic ice. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[37]  M. Skidmore,et al.  Microbial Life beneath a High Arctic Glacier , 2000, Applied and Environmental Microbiology.

[38]  H. Eicken,et al.  Magnetic resonance imaging of sea-ice pore fluids: methods and thermal evolution of pore microstructure , 2000 .

[39]  S. Patz,et al.  Tortuosity measurement and the effects of finite pulse widths on xenon gas diffusion NMR studies of porous media. , 2000, Magnetic resonance imaging.

[40]  C. Davies,et al.  Self-consistent forms of the chemical rate theory of Ostwald ripening , 2002 .

[41]  B. Christner Incorporation of DNA and Protein Precursors into Macromolecules by Bacteria at −15oC , 2002, Applied and Environmental Microbiology.

[42]  P. Shepson,et al.  NMR Investigation of the Quasi-Brine Layer in Ice/Brine Mixtures , 2002 .

[43]  D G Cory,et al.  The narrow pulse approximation and long length scale determination in xenon gas diffusion NMR studies of model porous media. , 2002, Journal of magnetic resonance.

[44]  E. Mosley‐Thompson,et al.  Bacterial recovery from ancient glacial ice. , 2003, Environmental microbiology.

[45]  Pabitra N. Sen,et al.  Time-dependent diffusion coefficient as a probe of geometry , 2004 .

[46]  P. Callaghan,et al.  Brine diffusion in first-year sea ice measured by Earth's field PGSE-NMR , 2005 .

[47]  Network images of drainage channels in sea spray icing by MR microscopy. , 2005, Magnetic resonance imaging.

[48]  D. D. Griffin,et al.  NMR measurements of permafrost : unfrozen water assay, pore-scale distribution of ice, and hydraulic permeability of sediments , 2005 .

[49]  A magnetic resonance study of temperature-dependent microstructural evolution and self-diffusion of water in Arctic first-year sea ice , 2005, Annals of Glaciology.

[50]  S. Matsukawa,et al.  Relationship between Recrystallization Rate of Ice Crystals in Sugar Solutions and Water Mobility in Freeze-Concentrated Matrix , 2006 .

[51]  P. A. A. Ussillous,et al.  Magnetic resonance imaging of structure and convection in solidifying mushy layers , 2006, Journal of Fluid Mechanics.

[52]  H. Mader,et al.  Subsurface ice as a microbial habitat , 2006 .

[53]  M. Fleury NMR SURFACE RELAXIVITY DETERMINATION USING NMR APPARENT DIFFUSION CURVES AND BET MEASUREMENTS , 2007 .

[54]  S. Schuster,et al.  A bacterial ice-binding protein from the Vostok ice core , 2008, Extremophiles.

[55]  S. Verma,et al.  Imaging techniques for mapping solution parameters, growth rate, and surface features during the growth of crystals from solution , 2008 .

[56]  C. Dayananda,et al.  Properties, Potentials, and Prospects of Antifreeze Proteins , 2008 .

[57]  P. Z. Sun,et al.  Magnetic resonance in porous media: recent progress. , 2008, The Journal of chemical physics.

[58]  Robin Dykstra,et al.  Using Earth’s Field NMR to Study Brine Content in Antarctic Sea Ice: Comparison with Salinity and Temperature Estimates , 2009 .

[59]  B. Christner Bioprospecting for microbial products that affect ice crystal formation and growth , 2009, Applied Microbiology and Biotechnology.

[60]  Giles M. Marion,et al.  FREZCHEM: A geochemical model for cold aqueous solutions , 2009, Computational Geosciences.

[61]  Sediment-rich Antarctic basal ice as a habitat for microorganisms , 2010 .

[62]  Charles Cockell,et al.  New priorities in the robotic exploration of Mars: the case for in situ search for extant life. , 2010, Astrobiology.

[63]  M L Johns,et al.  Nuclear magnetic resonance relaxation and diffusion in the presence of internal gradients: the effect of magnetic field strength. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[64]  A. Green,et al.  Imaging groundwater beneath a rugged proglacial moraine , 2011 .

[65]  S. Rokugawa,et al.  Estimation of ultrasonic scattering attenuation in partially frozen brines using magnetic resonance images , 2011 .