Hybrid Auxiliary Field Quantum Monte Carlo for Molecular Systems.

We propose a quantum Monte Carlo approach to solve the many-body Schrödinger equation for the electronic ground state. The method combines optimization from variational Monte Carlo and propagation from auxiliary field quantum Monte Carlo in a way that significantly alleviates the sign problem. In application to molecular systems, we obtain highly accurate results for configurations dominated by either dynamic or static electronic correlation.

[1]  Lin Lin,et al.  Explicitly antisymmetrized neural network layers for variational Monte Carlo simulation , 2021, J. Comput. Phys..

[2]  Sandeep Sharma,et al.  Taming the Sign Problem in Auxiliary-Field Quantum Monte Carlo Using Accurate Wave Functions. , 2021, Journal of chemical theory and computation.

[3]  Weinan E,et al.  Machine-learning-assisted modeling , 2021, Physics Today.

[4]  S. Sorella The phase diagram of the Hubbard model by Variational Auxiliary Field quantum Monte Carlo , 2021, 2101.07045.

[5]  J. Duncan,et al.  AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed Gradients , 2020, NeurIPS.

[6]  Joonho Lee,et al.  The performance of phaseless auxiliary-field quantum Monte Carlo on the ground state electronic energy of benzene. , 2020, The Journal of chemical physics.

[7]  Daniel S. Levine,et al.  The Ground State Electronic Energy of Benzene. , 2020, The journal of physical chemistry letters.

[8]  F. Noé,et al.  Deep-neural-network solution of the electronic Schrödinger equation , 2019, Nature Chemistry.

[9]  David Pfau,et al.  Ab-Initio Solution of the Many-Electron Schrödinger Equation with Deep Neural Networks , 2019, Physical Review Research.

[10]  Tarun Grover,et al.  Making trotters sprint: A variational imaginary time ansatz for quantum many-body systems , 2019, Physical Review B.

[11]  G. Chan,et al.  Efficient Ab Initio Auxiliary-Field Quantum Monte Carlo Calculations in Gaussian Bases via Low-Rank Tensor Decomposition. , 2018, Journal of chemical theory and computation.

[12]  E Weinan,et al.  Solving many-electron Schrödinger equation using deep neural networks , 2018, J. Comput. Phys..

[13]  Rupak Biswas,et al.  From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz , 2017, Algorithms.

[14]  Sandeep Sharma,et al.  PySCF: the Python‐based simulations of chemistry framework , 2018 .

[15]  Matthew Johnson,et al.  Compiling machine learning programs via high-level tracing , 2018 .

[16]  F. Becca Quantum Monte Carlo Approaches for Correlated Systems , 2017 .

[17]  Mario Motta,et al.  Ab initio computations of molecular systems by the auxiliary‐field quantum Monte Carlo method , 2017, 1711.02242.

[18]  Michael Betancourt,et al.  A Conceptual Introduction to Hamiltonian Monte Carlo , 2017, 1701.02434.

[19]  Ali Alavi,et al.  Semistochastic Heat-Bath Configuration Interaction Method: Selected Configuration Interaction with Semistochastic Perturbation Theory. , 2016, Journal of chemical theory and computation.

[20]  T. Yanagisawa Crossover from weakly to strongly correlated regions in the two-dimensional Hubbard model -- Off-diagonal wave function Monte Carlo studies of Hubbard model II -- , 2016, 1611.02391.

[21]  Kevin Gimpel,et al.  Gaussian Error Linear Units (GELUs) , 2016 .

[22]  C J Umrigar,et al.  Heat-Bath Configuration Interaction: An Efficient Selected Configuration Interaction Algorithm Inspired by Heat-Bath Sampling. , 2016, Journal of chemical theory and computation.

[23]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  M. Kalos,et al.  Helium at Zero Temperature With Hard-sphere and Other Forces , 2015 .

[25]  M. Hastings,et al.  Progress towards practical quantum variational algorithms , 2015, 1507.08969.

[26]  Roger B. Grosse,et al.  Optimizing Neural Networks with Kronecker-factored Approximate Curvature , 2015, ICML.

[27]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[28]  Shiwei Zhang,et al.  Symmetry in auxiliary-field quantum Monte Carlo calculations , 2013, 1307.2147.

[29]  S. Sorella Linearized auxiliary fields Monte Carlo technique: Efficient sampling of the fermion sign , 2011, 1111.6208.

[30]  G. Scuseria,et al.  Generalized Hartree-Fock Description of Molecular Dissociation. , 2011, Journal of chemical theory and computation.

[31]  Rodney J. Bartlett,et al.  The ‘tailored’ CCSD(T) description of the automerization of cyclobutadiene , 2011 .

[32]  Ali Alavi,et al.  Fermion Monte Carlo without fixed nodes: a game of life, death, and annihilation in Slater determinant space. , 2009, The Journal of chemical physics.

[33]  Henry Krakauer,et al.  Bond breaking with auxiliary-field quantum Monte Carlo. , 2007, The Journal of chemical physics.

[34]  Matthias Troyer,et al.  Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations , 2004, Physical review letters.

[35]  Jürgen Gauss,et al.  State-of-the-art density matrix renormalization group and coupled cluster theory studies of the nitrogen binding curve. , 2004, The Journal of chemical physics.

[36]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[37]  Thomas Bondo Pedersen,et al.  Reduced scaling in electronic structure calculations using Cholesky decompositions , 2003 .

[38]  Shiwei Zhang,et al.  Quantum Monte Carlo method using phase-free random walks with slater determinants. , 2002, Physical review letters.

[39]  Martin Head-Gordon,et al.  Benchmark variational coupled cluster doubles results , 2000 .

[40]  T. Yanagisawa,et al.  Off-Diagonal Wave Function Monte Carlo Studies of Hubbard Model I , 1998, cond-mat/0206033.

[41]  S. White,et al.  Ab initio quantum chemistry using the density matrix renormalization group , 1998, cond-mat/9808118.

[42]  J. Carlson,et al.  Constrained path Monte Carlo method for fermion ground states , 1996, cond-mat/9607062.

[43]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[44]  Kerstin Andersson,et al.  Second-order perturbation theory with a CASSCF reference function , 1990 .

[45]  M. Parrinello,et al.  A Novel Technique for the Simulation of Interacting Fermion Systems , 1989 .

[46]  P. Knowles,et al.  An efficient internally contracted multiconfiguration–reference configuration interaction method , 1988 .

[47]  S. Koonin,et al.  Auxiliary field Monte-Carlo for quantum many-body ground states , 1986 .

[48]  David M. Ceperley,et al.  Quantum Monte Carlo for molecules: Green’s function and nodal release , 1984 .

[49]  Peter J. Knowles,et al.  A new determinant-based full configuration interaction method , 1984 .

[50]  B. K. Carpenter,et al.  Limits on the activation parameters for automerization of cyclobutadiene-1,2-d2 , 1982 .

[51]  Josef Paldus,et al.  Applicability of coupled‐pair theories to quasidegenerate electronic states: A model study , 1980 .

[52]  B. Roos,et al.  A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach , 1980 .

[53]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[54]  D. Ceperley,et al.  Monte Carlo simulation of a many-fermion study , 1977 .

[55]  N. H. Beebe,et al.  Simplifications in the generation and transformation of two‐electron integrals in molecular calculations , 1977 .

[56]  M. Suzuki,et al.  Relationship between d-Dimensional Quantal Spin Systems and (d+1)-Dimensional Ising Systems: Equivalence, Critical Exponents and Systematic Approximants of the Partition Function and Spin Correlations , 1976 .

[57]  James B. Anderson,et al.  A random‐walk simulation of the Schrödinger equation: H+3 , 1975 .

[58]  T. H. Dunning Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .

[59]  J. Cizek On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .

[60]  D. Thouless Stability conditions and nuclear rotations in the Hartree-Fock theory , 1960 .

[61]  J. Hubbard Calculation of Partition Functions , 1959 .

[62]  H. Trotter On the product of semi-groups of operators , 1959 .

[63]  P. Löwdin Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction , 1955 .

[64]  P. Löwdin On the Non‐Orthogonality Problem Connected with the Use of Atomic Wave Functions in the Theory of Molecules and Crystals , 1950 .

[65]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .