Packing and Covering with Centrally Symmetric Convex Disks

Given a convex disk K (a convex compact planar set with nonempty interior), let δL(K) and θL(K) denote the lattice packing density and the lattice covering density of K, respectively. We prove that for every centrally-symmetric convex disk K we have that $$ 1\le\delta_L(K)\theta_L(K)\le1.17225\ldots $$ The left inequality is tight and it improves a 10-year old result.

[1]  J. Pach,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .

[2]  János Pach,et al.  Combinatorial Geometry , 2012 .

[3]  Jörg M. Wills,et al.  Handbook of Convex Geometry , 1993 .

[4]  W. Kuperberg,et al.  An inequality linking packing and covering densities of plane convex bodies , 1987 .

[5]  Ernst Sas,et al.  Über eine Extremumeigenschaft der Ellipsen , 1939 .

[6]  C. H. Dowker On minimum circumscribed polygons , 1944 .

[7]  L. A. Li︠u︡sternik Convex figures and polyhedra , 1966 .

[8]  G. Tóth,et al.  Packing and Covering with Convex Sets , 1993 .

[9]  L. Tóth Lagerungen in der Ebene auf der Kugel und im Raum , 1953 .

[10]  K. Reinhardt Über die dichteste gitterf örmige lagerung kongruenter bereiche in der ebene und eine besondere art konvexer kurven , 1934 .

[11]  J. Pach,et al.  Combinatorial geometry , 1995, Wiley-Interscience series in discrete mathematics and optimization.

[12]  G. Tóth,et al.  A Survey of Recent Results in the Theory of Packing and Covering , 1993 .

[13]  M. Day POLYGONS CIRCUMSCRIBED ABOUT CLOSED CONVEX CURVES , 2010 .

[14]  Veikko Ennola On the Lattice Constant of a Symmetric Convex Domain , 1961 .

[15]  H. S. M. Coxeter Review: L. Fejes Tóth, Lagerungen in der Ebene, auf der Kugel und im Raum , 1954 .

[16]  Dan Ismailescu,et al.  Inequalities between lattice packing and covering densities of centrally symmetric plane convex bodies , 2001, Discret. Comput. Geom..

[17]  Jeong Hyun Kang,et al.  Combinatorial Geometry , 2006 .

[18]  Melvin Hausner,et al.  A Vector Space Approach to Geometry , 1967 .

[19]  G. D. Chakerian,et al.  Geometric Extremum Problems , 1971 .