Solution structure of hyperbolic heat-conduction equation

Abstract The contributions of the initial temperature distribution ϕ and source disturbance f to the temperature field T in the hyperbolic heat conduction are related to that of the initial rate of temperature change ψ . This uncovers the structure of the temperature field and significantly simplifies the development of solutions of hyperbolic heat-conduction equations.

[1]  A. Barletta Hyperbolic propagation of an axisymmetric thermal signal in an infinite solid medium , 1996 .

[2]  A. B. Duncan,et al.  Review of Microscale Heat Transfer , 1994 .

[3]  Louis G. Hector,et al.  Propagation and reflection of thermal waves in a finite medium due to axisymmetric surface sources , 1992 .

[4]  Solution of two-dimensional hyperbolic heat conduction by high-resolution numerical methods , 1992 .

[5]  Adrienne S. Lavine,et al.  On Hyperbolic Heat Conduction and the Second Law of Thermodynamics , 1995 .

[6]  Alexandre E. Kronberg,et al.  Notes on wave theory in heat conduction: a new boundary condition , 1998 .

[7]  Brian Vick,et al.  Propagation and reflection of thermal waves in a finite medium , 1984 .

[8]  E. Zanchini,et al.  Hyperbolic heat conduction and local equilibrium: a second law analysis , 1997 .

[9]  Da Yu Tzou,et al.  Thermal Shock Waves Induced by a Moving Crack , 1990 .

[10]  Chen Han-Taw,et al.  Analysis of two-dimensional hyperbolic heat conduction problems , 1994 .

[11]  The resonance phenomenon in thermal waves , 1991 .

[12]  Thermal resonance under frequency excitations , 1992 .

[13]  M. N. Özişik,et al.  Non-Fourier effects on transient temperature resulting from periodic on-off heat flux , 1987 .

[14]  A. Majumdar,et al.  Microscale energy transport , 1998 .

[15]  E. Zanchini,et al.  Hyperbolic heat conduction and thermal resonances in a cylindrical solid carrying a steady-periodic electric field , 1996 .

[16]  D. Tzou THERMAL SHOCK PHENOMENA UNDER HIGH RATE RESPONSE IN SOLIDS , 1992 .

[17]  W. Yuen,et al.  Non-Fourier Heat Conduction in a Semi-infinite Solid Subjected to Oscillatory Surface Thermal Disturbances , 1989 .

[18]  H. Wilhelm,et al.  Nonlinear hyperbolic theory of thermal waves in metals , 1975 .

[19]  C. L. Tien,et al.  Challenges in Microscale Conductive and Radiative Heat Transfer , 1994 .

[20]  D. Tzou,et al.  On the Wave Theory in Heat Conduction , 1994 .

[21]  D. Tang,et al.  Non-Fourier heat conduction in a finite medium under periodic surface thermal disturbance , 1996 .

[22]  Luigi Preziosi,et al.  Addendum to the paper "Heat waves" [Rev. Mod. Phys. 61, 41 (1989)] , 1990 .