Phase-modulated Autler-Townes splitting in a giant-atom system within waveguide QED

[1]  F. Nori,et al.  Tunable Chiral Bound States with Giant Atoms. , 2020, Physical review letters.

[2]  A. Poddubny,et al.  Waveguide Quantum Optomechanics: Parity-Time Phase Transitions in Ultrastrong Coupling Regime. , 2020, Physical review letters.

[3]  F. Ciccarello,et al.  Mechanism of decoherence-free coupling between giant atoms , 2020, Physical Review Research.

[4]  A. F. Kockum,et al.  Engineering the level structure of a giant artificial atom in waveguide quantum electrodynamics , 2020, 2003.14167.

[5]  F. Nori,et al.  Waveguide quantum electrodynamics with superconducting artificial giant atoms , 2019, Nature.

[6]  Jacob M. Taylor,et al.  Beyond spontaneous emission: Giant atom bounded in the continuum , 2019, 1912.09980.

[7]  A. F. Kockum,et al.  Oscillating bound states for a giant atom , 2019, Physical Review Research.

[8]  Yidong Huang,et al.  Hybrid waveguide scheme for silicon-based quantum photonic circuits with quantum light sources , 2019, Photonics Research.

[9]  L. Deng,et al.  Hybrid level anharmonicity and interference-induced photon blockade in a two-qubit cavity QED system with dipole–dipole interaction , 2019, Photonics Research.

[10]  A. Sørensen,et al.  Dynamics of Many-Body Photon Bound States in Chiral Waveguide QED , 2019, Physical Review X.

[11]  Chang-pu Sun,et al.  Quantum phase transition and interference trapping of populations in a coupled-resonator waveguide , 2019, Physical Review A.

[12]  Fuguo Deng,et al.  Microwave transmission through an artificial atomic chain coupled to a superconducting photonic crystal , 2019, Physical Review A.

[13]  J. Cirac,et al.  Engineering and Harnessing Giant Atoms in High-Dimensional Baths: A Proposal for Implementation with Cold Atoms. , 2019, Physical review letters.

[14]  Gustav Andersson,et al.  Non-exponential decay of a giant artificial atom , 2018, Nature Physics.

[15]  J. Cirac,et al.  Unconventional quantum optics in topological waveguide QED , 2018, Science Advances.

[16]  Yao-Lung L. Fang,et al.  Exciting a Bound State in the Continuum through Multiphoton Scattering Plus Delayed Quantum Feedback. , 2018, Physical review letters.

[17]  Fuguo Deng,et al.  Photon transport mediated by an atomic chain trapped along a photonic crystal waveguide , 2018, Physical Review A.

[18]  Franco Nori,et al.  Decoherence-Free Interaction between Giant Atoms in Waveguide Quantum Electrodynamics. , 2017, Physical review letters.

[19]  W. Jia,et al.  Efficient single-photon frequency conversion in the microwave domain using superconducting quantum circuits , 2017, 1711.05153.

[20]  F. Nori,et al.  Microwave photonics with superconducting quantum circuits , 2017, 1707.02046.

[21]  C. K. Law,et al.  Bound state in the continuum by spatially separated ensembles of atoms in a coupled-cavity array , 2017, 1705.04021.

[22]  Fuguo Deng,et al.  Photon scattering by an atomic ensemble coupled to a one-dimensional nanophotonic waveguide , 2017, 1703.09375.

[23]  O. Painter,et al.  Al transmon qubits on silicon-on-insulator for quantum device integration , 2017, 1703.10195.

[24]  Franco Nori,et al.  Circuit quantum acoustodynamics with surface acoustic waves , 2017, Nature Communications.

[25]  Anton Frisk Kockum,et al.  Giant acoustic atom: A single quantum system with a deterministic time delay , 2016, 1612.00865.

[26]  Esteban Moreno,et al.  Nonreciprocal few-photon routing schemes based on chiral waveguide-emitter couplings , 2016, 1608.04928.

[27]  A. Houck,et al.  Observation of a Dissipative Phase Transition in a One-Dimensional Circuit QED Lattice , 2016, Physical Review X.

[28]  Fuli Li,et al.  Tunable electromagnetically induced transparency in a composite superconducting system , 2016 .

[29]  John C. Schotland,et al.  Multiqubit entanglement in bidirectional-chiral-waveguide QED , 2016, 1604.03646.

[30]  D. Zueco,et al.  Dynamical signatures of bound states in waveguide QED , 2016, 1603.09408.

[31]  Ofer Firstenberg,et al.  Colloquium: Strongly interacting photons in one-dimensional continuum , 2016, 1603.06590.

[32]  Shiro Saito,et al.  Superconducting qubit–oscillator circuit beyond the ultrastrong-coupling regime , 2016, Nature Physics.

[33]  Yasunobu Nakamura,et al.  Single microwave-photon detector using an artificial Λ-type three-level system , 2016, Nature Communications.

[34]  J. Cirac,et al.  Bound States in Boson Impurity Models , 2015, 1512.07238.

[35]  Francesco Ciccarello,et al.  Atom-field dressed states in slow-light waveguide QED , 2015, 1512.04946.

[36]  Anton Frisk Kockum,et al.  Designing frequency-dependent relaxation rates and Lamb shifts for a giant artificial atom , 2014, 1406.0350.

[37]  Serge Rosenblum,et al.  All-optical routing of single photons by a one-atom switch controlled by a single photon , 2014, Science.

[38]  A. F. Kockum,et al.  Propagating phonons coupled to an artificial atom , 2014, Science.

[39]  C. P. Sun,et al.  Controllable single-photon frequency converter via a one-dimensional waveguide , 2014, 1402.3389.

[40]  Vassilios Yannopapas,et al.  Dirac Points, Topological Edge Modes and Nonreciprocal Transmission in One-Dimensional Metamaterial-Based Coupled-Cavity Arrays , 2014 .

[41]  Heng Fan,et al.  Tunable single-photon frequency conversion in a Sagnac interferometer , 2013, Scientific Reports.

[42]  Serge Haroche,et al.  Controlling photons in a box and exploring the quantum to classical boundary , 2013, Angewandte Chemie.

[43]  V. Gritsev,et al.  Topologically protected strongly correlated states of photons , 2012, 1212.6432.

[44]  G. Rempe,et al.  An elementary quantum network of single atoms in optical cavities , 2012, Nature.

[45]  A. A. Abdumalikov,et al.  Electromagnetically induced transparency on a single artificial atom. , 2010, Physical review letters.

[46]  Kurt Busch,et al.  Few-photon transport in low-dimensional systems: interaction-induced radiation trapping. , 2010, Physical review letters.

[47]  Shanhui Fan,et al.  Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom , 2009, 0901.3938.

[48]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[49]  Franco Nori,et al.  Controllable scattering of a single photon inside a one-dimensional resonator waveguide. , 2008, Physical review letters.

[50]  D. E. Chang,et al.  A single-photon transistor using nanoscale surface plasmons , 2007, 0706.4335.

[51]  Shanhui Fan,et al.  Coherent single photon transport in one-dimensional waveguide coupledwith superconducting quantum bits , 2005, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[52]  A. D. Boozer,et al.  Trapped atoms in cavity QED: coupling quantized light and matter , 2005 .

[53]  Ken-ya Hashimoto,et al.  Surface Acoustic Wave Filters , 2005 .

[54]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[55]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[56]  J. Raimond,et al.  Observation of cavity-enhanced single-atom spontaneous emission , 1983 .

[57]  L. Milstein,et al.  Surface acoustic wave devices , 1979, IEEE Communications Magazine.

[58]  D. Pappas Electromagnetically induced transparency in circuit quantum electrodynamics with nested polariton states , 2017 .

[59]  Maira Amezcua,et al.  Quantum Optics , 2012 .