Universal data compression and portfolio selection

The authors consider universal data compression, universal portfolio selection (online portfolio algorithms) and the relationship of both to information theory. Apparently the fundamental minimax redundancy game in data compression and the minimax regret game for the growth rate of wealth in investment have the same answer. There is also a duality between entropy rate and the growth rate of wealth.

[1]  Ran El-Yaniv,et al.  Nearly Optimal Competitive Online Replacement Policies , 1997, Math. Oper. Res..

[2]  T. Cover,et al.  Game-theoretic optimal portfolios , 1988 .

[3]  Erik Ordentlich,et al.  Universal portfolios with side information , 1996, IEEE Trans. Inf. Theory.

[4]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[5]  Y. Shtarkov,et al.  Multialphabet universal coding of memoryless sources , 1995 .

[6]  E. Thorp OPTIMAL GAMBLING SYSTEMS FOR FAVORABLE GAMES , 1969 .

[7]  Erik Ordentlich,et al.  The Cost of Achieving the Best Portfolio in Hindsight , 1998, Math. Oper. Res..

[8]  H. Robbins Asymptotically Subminimax Solutions of Compound Statistical Decision Problems , 1985 .

[9]  Ran El-Yaniv,et al.  Competitive solutions for online financial problems , 1998, CSUR.

[10]  John L. Kelly,et al.  A new interpretation of information rate , 1956, IRE Trans. Inf. Theory.

[11]  Michael J. Klass,et al.  A Diffusion Model for Optimal Portfolio Selection in the Presence of Brokerage Fees , 1988, Math. Oper. Res..

[12]  F. Jamshidian Asymptotically Optimal Portfolios , 1992 .

[13]  Robert M. Bell,et al.  Competitive Optimality of Logarithmic Investment , 1980, Math. Oper. Res..

[14]  Thomas M. Cover,et al.  Empirical Bayes stock market portfolios , 1986 .

[15]  P. Algoet UNIVERSAL SCHEMES FOR PREDICTION, GAMBLING AND PORTFOLIO SELECTION' , 1992 .

[16]  T. Cover,et al.  Asymptotic optimality and asymptotic equipartition properties of log-optimum investment , 1988 .

[17]  D. Blackwell An analog of the minimax theorem for vector payoffs. , 1956 .

[18]  T. Cover Universal Portfolios , 1996 .

[19]  Wojciech Szpankowski,et al.  On asymptotics of certain sums arising in coding theory , 1995, IEEE Trans. Inf. Theory.

[20]  Ran El-Yaniv,et al.  Competitive analysis of financial games , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[21]  N. Merhav,et al.  Universal Schemes for Sequential Decision from Individual Data Sequences , 1993, Proceedings. IEEE International Symposium on Information Theory.

[22]  Ran El-Yaniv,et al.  The statistical adversary allows optimal money-making trading strategies , 1995, SODA '95.

[23]  Andrew R. Barron,et al.  A bound on the financial value of information , 1988, IEEE Trans. Inf. Theory.

[24]  JORMA RISSANEN,et al.  A universal data compression system , 1983, IEEE Trans. Inf. Theory.

[25]  Erik Ordentlich,et al.  On-line portfolio selection , 1996, COLT '96.

[26]  Raphail E. Krichevsky,et al.  The performance of universal encoding , 1981, IEEE Trans. Inf. Theory.