Data Analytics and Management in Data Intensive Domains

As Moore’s Law and associated technical advances continue to bulldoze their way through society, both exciting possibilities and severe challenges emerge. The upside is the explosive growth of data and compute resources that promise revolutionary modes of discovery and innovation not only within traditional knowledge disciplines, but especially between them. The challenge, however, is to build the large-scale, widely accessible, persistent and automated infrastructures that will be necessary for navigating and managing the unprecedented complexity of exponentially increasing quantities of distributed and heterogenous data. This will require innovations in both the technical and social domains. Inspired by the successful development of the Internet and leveraging the Digital Object Framework and FAIR Principles (for making data Findable, Accessible, Interoperable and Reusable by machines) the GO FAIR initiative works with voluntary stakeholders to accelerate convergence on minimal standards and working implementations leading to an Internet of FAIR Data and Services (IFDS). In close collaboration with GO FAIR and DONA, the RDA GEDE and C2CAMP initiatives will continue its FAIR DO implementation efforts..

[1]  E. Öpik,et al.  Statistical Studies of Double Stars: On the Distribution of Relative Luminosities and Distances of Double Stars in the Harvard Revised Photometry North of Declination -31° , 1924 .

[2]  V. A. Ambartsumian On the Statistics of Double Stars , 1937 .

[3]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[4]  A. V. Tutukov,et al.  Catalogue of Physical Parameters of Spectroscopic Binary Stars , 1980 .

[5]  L. R. Yungelson,et al.  Study of physical properties of spectroscopic binary stars , 1982 .

[6]  Gerard Gilmore,et al.  New light on faint stars – III. Galactic structure towards the South Pole and the Galactic thick disc , 1983 .

[7]  G. G. Douglass,et al.  The Washington visual double star catalog, 1984. 0 , 1985 .

[8]  Multiplicity among solar type stars in the solar neighbourhood. I. CORAVEL radial velocity observations of 291 stars. , 1991 .

[9]  Andrew Gould,et al.  Disk M Dwarf Luminosity Function From HST Star Counts , 1995 .

[10]  W. D. Heacox Of Logarithms, Binary Orbits, and Self-Replicating Distributions , 1996 .

[11]  A. E. Piskunov,et al.  On the luminosity ratio of pre-main sequence binaries , 1998 .

[12]  B. Cameron Reed,et al.  New Estimates of the Scale Height and Surface Density of OB Stars in the Solar Neighborhood , 2000 .

[13]  J. R. Hurley,et al.  Comprehensive analytic formulae for stellar evolution as a function of mass and metallicity , 2000, astro-ph/0001295.

[14]  Brian D. Mason,et al.  The 2001 US Naval Observatory Double Star CD-ROM. II. The Fifth Catalog of Orbits of Visual Binary Stars , 2001 .

[15]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[16]  O. Malkov,et al.  Binary stars and the fundamental initial mass function , 2001 .

[17]  G. L. Wycoff,et al.  The Tycho Double Star Catalogue , 2002 .

[18]  Christine Allen,et al.  Halo Wide Binaries and Moving Clusters as Probes of the Dynamical and Merger History of our Galaxy , 2006, Proceedings of the International Astronomical Union.

[19]  Amsterdam,et al.  Pairing mechanisms for binary stars , 2008, 0811.3092.

[20]  Russel J. White,et al.  A SURVEY OF STELLAR FAMILIES: MULTIPLICITY OF SOLAR-TYPE STARS , 2009, 1007.0414.

[21]  K. Allers Brown Dwarf Binaries , 2011, Proceedings of the International Astronomical Union.

[22]  Jie Yin,et al.  ESA: emergency situation awareness via microbloggers , 2012, CIKM.

[23]  Harvard-Smithsonian CfA,et al.  Stellar Multiplicity , 2013, 1303.3028.

[24]  Simon P. Goodwin,et al.  Binary mass ratios: system mass not primary mass , 2012, 1211.5936.

[25]  O. Yu. Malkov,et al.  Eclipsing variables: Catalogue and classification , 2013 .

[26]  O. Malkov,et al.  Assessment of evolutionary status of eclipsing binaries using light-curve parameters and spectral classification , 2014, 1408.0870.

[27]  Yang Huang,et al.  On the metallicity gradients of the Galactic disk as revealed by LSS-GAC red clump stars , 2015, 1505.08065.

[28]  Zhiyuan Liu,et al.  A C-LSTM Neural Network for Text Classification , 2015, ArXiv.

[29]  O. Malkov,et al.  Statistical Analysis of a Comprehensive List of Visual Binaries , 2015 .

[30]  Xiaohui Yan,et al.  A Probabilistic Model for Bursty Topic Discovery in Microblogs , 2015, AAAI.

[31]  Shanshan Zhang,et al.  Semi-supervised Discovery of Informative Tweets During the Emerging Disasters , 2016, ArXiv.

[32]  Andrei Tokovinin,et al.  Eccentricity distribution of wide binaries , 2015, 1512.00278.

[33]  M. Nouh,et al.  Statistical study of visual binaries , 2016, 1610.09810.

[34]  O. Malkov,et al.  Visual Binary Stars: Data to Investigate Formation of Binaries , 2016 .

[35]  Gaia Collaboration,et al.  The Gaia mission , 2016, 1609.04153.

[36]  Jo Bovy,et al.  Stellar inventory of the solar neighbourhood using Gaia DR1 , 2017, 1704.05063.

[37]  Abubakr Gafar Abdalla,et al.  Probability Theory , 2017, Encyclopedia of GIS.

[38]  Dana Kovaleva,et al.  Insight into Binary Star Formation via Modelling Visual Binaries Datasets , 2018, DAMDID/RCDL.