Dynamical thermostatting, divergenceless phase-space flows, and KBB systems

We extend to general divergenceless systems the dynamical thermostatting approach to statistical ensembles proposed by Kusnezov, Bulgac and Bauer (KBB). Furthermore, a new family of dynamical systems inspired by the KBB method is introduced, and some of its properties considered.

[1]  D. Kusnezov,et al.  Canonical ensembles from chaos II: Constrained dynamical systems , 1992 .

[2]  L. Andrey The rate of entropy change in non-hamiltonian systems , 1985 .

[3]  D. Kusnezov Diffusive aspects of global demons , 1992 .

[4]  A. R. Plastino,et al.  Statistical treatment of autonomous systems with divergencelless flows , 1996 .

[5]  Yoichiro Nambu Generalized Hamiltonian dynamics , 1973 .

[6]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[7]  Bulgac,et al.  Neutron and x-ray scattering off atomic clusters. , 1995, Physical review. B, Condensed matter.

[8]  J. Sloan,et al.  Chaotic dynamics and fluctuations , 1992 .

[9]  L. Andrey Note concerning the paper “the rate of entropy change in non-hamiltonian systems” , 1986 .

[10]  J. Perez,et al.  Developments in Nambu mechanics , 1994 .

[11]  Wolfgang Bauer,et al.  Canonical ensembles from chaos , 1990 .

[12]  D. Kusnezov,et al.  Canonical ensemble averages from pseudomicrocanonical dynamics. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[13]  W. Steeb,et al.  A note on Nambu mechanics , 1991 .

[14]  Philip J. Morrison,et al.  Quantum mechanics as a generalization of Nambu dynamics to the Weyl-Wigner formalism , 1991 .

[15]  W. Steeb Generalized liouville equation, entropy, and dynamic systems containing limit cycles , 1979 .

[16]  Molecular dynamics of rigid molecules , 1996 .

[17]  S. Smale,et al.  ON THE PROBLEM OF REVIVING THE ERGODIC HYPOTHESIS OF BLOTZMANN AND BIRKHOFF , 1980 .

[18]  E. H. Kerner Note on Hamiltonian format of Lotka-Volterra dynamics , 1990 .

[19]  Celia Anteneodo,et al.  A Dynamical Thermostatting Approach to Nonextensive Canonical Ensembles , 1997 .

[20]  Harmon,et al.  Spin dynamics in magnets: Equation of motion and finite temperature effects. , 1996, Physical review. B, Condensed matter.

[21]  D. Kusnezov,et al.  Deterministic and time-reversal invariant description of Brownian motion , 1990 .