Self-aligned patterning of tantalum oxide on Cu/SiO2 through redox-coupled inherently selective atomic layer deposition

[1]  Sangwoo Shin,et al.  Gradient area-selective deposition for seamless gap-filling in 3D nanostructures through surface chemical reactivity control , 2022, Nature Communications.

[2]  A. Delabie,et al.  Mechanisms for undesired nucleation on H-terminated Si and dimethylamino-trimethylsilane passivated SiO2 during TiO2 area-selective atomic layer deposition , 2022, Applied Physics Letters.

[3]  K. Cao,et al.  Surface Acidity-Induced Inherently Selective Atomic Layer Deposition of Tantalum Oxide on Dielectrics , 2022, Chemistry of Materials.

[4]  S. Bent,et al.  Tuning Molecular Inhibitors and Aluminum Precursors for the Area-Selective Atomic Layer Deposition of Al2O3 , 2022, Chemistry of Materials.

[5]  T. Conard,et al.  Understanding Selectivity Loss Mechanisms in Selective Material Deposition by Area Deactivation on 10 nm Cu/SiO2 Patterns , 2022, ACS Applied Electronic Materials.

[6]  F. Shi,et al.  Self-aligned patterning technique for fabricating high-performance diamond sensor arrays with nanoscale precision , 2022, Science advances.

[7]  Jun Yu Li,et al.  Relation between Reactive Surface Sites and Precursor Choice for Area-Selective Atomic Layer Deposition Using Small Molecule Inhibitors , 2022, The journal of physical chemistry. C, Nanomaterials and interfaces.

[8]  P. Ye,et al.  Scaled indium oxide transistors fabricated using atomic layer deposition , 2022, Nature Electronics.

[9]  P. Gopalan,et al.  Aligned 2D carbon nanotube liquid crystals for wafer-scale electronics , 2021, Science advances.

[10]  A. Kummel,et al.  Proximity Effects of the Selective Atomic Layer Deposition of Cobalt on the Nanoscale: Implications for Interconnects , 2021, ACS Applied Nano Materials.

[11]  I. Oh,et al.  Reaction Mechanisms of Non-hydrolytic Atomic Layer Deposition of Al2O3 with a Series of Alcohol Oxidants , 2021, The Journal of Physical Chemistry C.

[12]  T. Conard,et al.  Nanomechanical Characterization of Organic Surface Passivation Films on 50 nm Patterns during Area-Selective Deposition , 2021 .

[13]  S. Bent,et al.  Area-Selective Atomic Layer Deposition on Chemically Similar Materials: Achieving Selectivity on Oxide/Oxide Patterns , 2021 .

[14]  M. Verheijen,et al.  Area-Selective Atomic Layer Deposition of TiN Using Aromatic Inhibitor Molecules for Metal/Dielectric Selectivity , 2020, Chemistry of Materials.

[15]  G. Parsons,et al.  Area-Selective Deposition: Fundamentals, Applications, and Future Outlook , 2020 .

[16]  R. Waser,et al.  Design of defect-chemical properties and device performance in memristive systems , 2020, Science Advances.

[17]  Han-Bo-Ram Lee,et al.  A Selective Toolbox for Nanofabrication , 2020 .

[18]  K. Cao,et al.  Atomic level deposition to extend Moore’s law and beyond , 2020, International Journal of Extreme Manufacturing.

[19]  K. Cao,et al.  Inherently Selective Atomic Layer Deposition and Applications , 2020, Chemistry of Materials.

[20]  S. De Gendt,et al.  Area-selective ALD of Ru on nm-scale Cu lines through dimerization of amino-functionalized alkoxy silane passivation films. , 2020, ACS applied materials & interfaces.

[21]  Vei Wang,et al.  VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code , 2019, Comput. Phys. Commun..

[22]  M. Verheijen,et al.  Area-Selective Deposition of Ruthenium by Combining Atomic Layer Deposition and Selective Etching , 2019, Chemistry of Materials.

[23]  Han‐Bo‐Ram Lee The Era of Atomic Crafting , 2019, Chemistry of Materials.

[24]  Feng Wang,et al.  Highly Dispersed and Crystalline Ta2O5 Anchored Pt Electrocatalyst with Improved Activity and Durability Toward Oxygen Reduction: Promotion by Atomic-Scale Pt–Ta2O5 Interactions , 2019, ACS Catalysis.

[25]  D. Muller,et al.  Additive manufacturing of patterned 2D semiconductor through recyclable masked growth , 2019, Proceedings of the National Academy of Sciences of the United States of America.

[26]  G. Parsons Functional model for analysis of ALD nucleation and quantification of area-selective deposition , 2019, Journal of Vacuum Science & Technology A.

[27]  W. Kessels,et al.  From the Bottom-Up: Toward Area-Selective Atomic Layer Deposition with High Selectivity† , 2018, Chemistry of materials : a publication of the American Chemical Society.

[28]  Fei Chen,et al.  3D nanofabrication by volumetric deposition and controlled shrinkage of patterned scaffolds , 2018, Science.

[29]  Y. Chabal,et al.  Vapor-Phase Cleaning and Corrosion Inhibition of Copper Films by Ethanol and Heterocyclic Amines. , 2018, ACS applied materials & interfaces.

[30]  Suman Datta,et al.  The era of hyper-scaling in electronics , 2018, Nature Electronics.

[31]  M. Morris,et al.  Enabling Large-Area Selective Deposition on Metal-Dielectric Patterns using Polymer Brush Deactivation , 2018, The Journal of Physical Chemistry C.

[32]  G. Leusink,et al.  Perspective: New process technologies required for future devices and scaling , 2018 .

[33]  S. Armini,et al.  Vapor-deposited octadecanethiol masking layer on copper to enable area selective Hf3N4 atomic layer deposition on dielectrics studied by in situ spectroscopic ellipsometry , 2018 .

[34]  Takhee Lee,et al.  Contact‐Engineered Electrical Properties of MoS2 Field‐Effect Transistors via Selectively Deposited Thiol‐Molecules , 2018, Advanced materials.

[35]  Ashley R. Head,et al.  Self-cleaning and surface chemical reactions during hafnium dioxide atomic layer deposition on indium arsenide , 2018, Nature Communications.

[36]  A. Javey,et al.  Tantalum Oxide Electron-selective Heterocontacts for Silicon Photovoltaics and Photoelectrochemical Water Reduction , 2018 .

[37]  S. Bent,et al.  Area-Selective Atomic Layer Deposition of Metal Oxides on Noble Metals through Catalytic Oxygen Activation , 2017, Chemistry of materials : a publication of the American Chemical Society.

[38]  F. Roozeboom,et al.  Area-Selective Atomic Layer Deposition of SiO2 Using Acetylacetone as a Chemoselective Inhibitor in an ABC-Type Cycle , 2017, ACS nano.

[39]  K. Cao,et al.  Oxide-Nanotrap-Anchored Platinum Nanoparticles with High Activity and Sintering Resistance by Area-Selective Atomic Layer Deposition. , 2017, Angewandte Chemie.

[40]  C. Hwang,et al.  Comparison of the Atomic Layer Deposition of Tantalum Oxide Thin Films Using Ta(NtBu)(NEt2)3, Ta(NtBu)(NEt2)2Cp, and H2O. , 2017, ACS applied materials & interfaces.

[41]  Aaron D. Franklin,et al.  Nanomaterials in transistors: From high-performance to thin-film applications , 2015, Science.

[42]  Zhenan Bao,et al.  Selective metal deposition at graphene line defects by atomic layer deposition , 2014, Nature Communications.

[43]  Hu Tao,et al.  All-water-based electron-beam lithography using silk as a resist. , 2014, Nature nanotechnology.

[44]  G. Jursich,et al.  On the initial growth of atomic layer deposited TiO2 films on silicon and copper surfaces , 2012 .

[45]  M. Ritala,et al.  In Situ Reaction Mechanism Studies on the New tBuN=M(NEt2)3 -Water and tBuN=M(NEt2)3 - Ozone (M = Nb,Ta) Atomic Layer Deposition Processes , 2012 .

[46]  Kinam Kim,et al.  A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures. , 2011, Nature materials.

[47]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[48]  K. Kern,et al.  Engineering atomic and molecular nanostructures at surfaces , 2005, Nature.

[49]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[50]  S. Sugawa,et al.  Modification of copper and copper oxide surface states due to isopropyl alcohol treatment toward area-selective processes , 2021 .

[51]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[52]  C. Wagner,et al.  EUV lithography: Lithography gets extreme , 2010 .