Mechanics and thermodynamics of surface growth viewed as moving discontinuities

Abstract Surface growth is presently described as the motion of a moving interface of vanishing thickness, physically representing the generating cells, separating a zone not yet affected by growth from a domain in which growth has occurred. The jump conditions of density, velocity, momentum, energy, and entropy over the moving front are expressed from the general balance laws of open systems in both physical and material format. The writing of the jump of the internal entropy production in material format allows the identification of a driving force for surface growth, thermodynamically conjugated to the material velocity of the moving front.