Swarm-Based Computational Development

Swarms are a metaphor for complex dynamic systems. In swarms, large numbers of individuals locally interact and form non-linear, dynamic interaction networks. Ants, wasps and termites, for instance, are natural swarms whose individual and group behaviors have been evolving over millions of years. In their intricate nest constructions, the emergent effectiveness of their behaviors becomes apparent. Swarm-based computational simulations capture the corresponding principles of agent-based, decentralized, self-organizing models. In this work, we present ideas around swarm-based developmental systems, in particular swarm grammars, a swarm-based generative representation, and our efforts towards the unification of this methodology and the improvement of its accessibility.

[1]  Przemyslaw Prusinkiewicz,et al.  The Algorithmic Beauty of Plants , 1990, The Virtual Laboratory.

[2]  Susan Stepney,et al.  Reflections on the Simulation of Complex Systems for Science , 2010, 2010 15th IEEE International Conference on Engineering of Complex Computer Systems.

[3]  Richard E. Grandy,et al.  Orlando, Florida, USA , 2011 .

[4]  Terence Soule,et al.  Breeding swarms: a GA/PSO hybrid , 2005, GECCO '05.

[5]  Jacques Ferber,et al.  A morphogenesis model for multiagent embryogeny , 2006 .

[6]  Isaac Salazar-Ciudad,et al.  Tooth morphogenesis in vivo, in vitro, and in silico. , 2008, Current topics in developmental biology.

[7]  Stephen Wolfram,et al.  Cellular automata as models of complexity , 1984, Nature.

[8]  Diane Hu,et al.  A SHH-responsive signaling center in the forebrain regulates craniofacial morphogenesis via the facial ectoderm , 2009, Development.

[9]  Marc Ebner,et al.  Coevolution and the Red Queen effect shape virtual plants , 2006, Genetic Programming and Evolvable Machines.

[10]  C. Sensen,et al.  Advanced Imaging in Biology and Medicine , 2009 .

[11]  Kenrick Mock Wildwood: the evolution of L-system plants for virtual environments , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[12]  Daniel Jones AtomSwarm: A Framework for Swarm Improvisation , 2008, EvoWorkshops.

[13]  Jörg Denzinger,et al.  Evolutionary online learning of cooperative behavior with situation-action pairs , 2000, Proceedings Fourth International Conference on MultiAgent Systems.

[14]  Radomír Mech,et al.  Visual Models of Plant Development , 1997, Handbook of Formal Languages.

[15]  Christian Jacob,et al.  Swarm-driven Idea Models – From Insect NestsTo Modern Architecture , 2008 .

[16]  Noam Chomsky,et al.  Three models for the description of language , 1956, IRE Trans. Inf. Theory.

[17]  C. Jacob Evolving evolution programs: genetic programming and L-systems , 1996 .

[18]  Gregory Hornby,et al.  Measuring complexity by measuring structure and organization , 2007, 2007 IEEE Congress on Evolutionary Computation.

[19]  Guy Theraulaz,et al.  Self-Organization in Biological Systems , 2001, Princeton studies in complexity.

[20]  Gabriella Kókai,et al.  Modelling Blood Vessels of the Eye with Parametric L-Systems Using Evolutionary Algorithms , 1999, AIMDM.

[21]  Christian Jacob,et al.  Artistic Exploration of the Worlds of Digital Developmental Swarms , 2011, Leonardo.

[22]  Christian Jacob,et al.  The Swarming Body: Simulating the Decentralized Defenses of Immunity , 2006, ICARIS.

[23]  Gregory S. Hornby,et al.  Body-brain co-evolution using L-systems as a generative encoding , 2001 .

[24]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[25]  Christian Jacob,et al.  The Spatiality of Swarms - Quantitative Analysis of Dynamic Interaction Networks , 2008, ALIFE.

[26]  Peter J. Bentley,et al.  On growth, form and computers , 2003 .

[27]  Peter Schuster,et al.  How does complexity arise in evolution , 1996 .

[28]  Rolf Drechsler,et al.  Applications of Evolutionary Computing, EvoWorkshops 2008: EvoCOMNET, EvoFIN, EvoHOT, EvoIASP, EvoMUSART, EvoNUM, EvoSTOC, and EvoTransLog, Naples, Italy, March 26-28, 2008. Proceedings , 2008, EvoWorkshops.

[29]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[30]  Peter J. Bentley,et al.  Three Ways to Grow Designs: A Comparison of Embryogenies for an Evolutionary Design Problem , 1999, GECCO.

[31]  Andrei L. Turinsky,et al.  Geometric Morphometrics and the Study of Development , 2009 .

[32]  George N. Reeke,et al.  BOOK REVIEW: "SELF-ORGANIZATION IN BIOLOGICAL SYSTEMS" BY S. CAMAZINE, J. DENEUBOURG, N. R. FRANKS, J. SNEYD, G. THERAULAZ AND E. BONABEAU , 2002 .

[33]  Christian Jacob,et al.  Immunity Through Swarms: Agent-Based Simulations of the Human Immune System , 2004, ICARIS.

[34]  María Cristina Riff,et al.  Towards an immune system that solves CSP , 2007, 2007 IEEE Congress on Evolutionary Computation.

[35]  Krishnan Gowri Green Building Rating Systems: An Overview , 2004 .

[36]  A. Lindenmayer Developmental systems without cellular interactions, their languages and grammars. , 1971, Journal of theoretical biology.

[37]  Radomír Mech,et al.  Visual models of plants interacting with their environment , 1996, SIGGRAPH.

[38]  Eduardo Miranda,et al.  Evolutionary Computer Music , 2007 .

[39]  Jean-Louis Giavitto,et al.  Modeling the topological organization of cellular processes. , 2003, Bio Systems.

[40]  Tim Blackwell,et al.  Swarming and Music , 2007 .

[41]  K. Gowri Sustainability Green Building Rating Systems: An Overview , 2004 .

[42]  Wolfgang Banzhaf,et al.  Artificial Chemistries – Towards Constructive Dynamical Systems , 2004 .

[43]  Christian Jacob,et al.  Genetic swarm grammar programming: Ecological breeding like a gardener , 2007, 2007 IEEE Congress on Evolutionary Computation.

[44]  Jacques Ferber,et al.  The TurtleKit Simulation Platform: Application to Complex Systems , 2005 .

[45]  Zoltán Tóth,et al.  Parametric L-system description of the retina with combined evolutionary operators , 1999 .

[46]  S. Guy Visions of Ventilation: Pathways to Sustainable Architecture , 1999 .

[47]  Gabriella Kókai,et al.  Evolving swarms that build 3D structures , 2005, 2005 IEEE Congress on Evolutionary Computation.

[48]  Peter J. Bentley,et al.  Biologically Inspired Evolutionary Development , 2003, ICES.

[49]  Christian Jacob,et al.  Evolutionary swarm design of architectural idea models , 2008, GECCO '08.

[50]  Radomír Mech,et al.  Realistic modeling and rendering of plant ecosystems , 1998, SIGGRAPH.

[51]  Stuart A. Kauffman,et al.  ORIGINS OF ORDER , 2019, Origins of Order.

[52]  Grzegorz Rozenberg,et al.  Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.

[53]  Colin Smith On vertex-vertex systems and their use in geometric and biological modelling , 2006 .

[54]  Christian Jacob,et al.  Illustrating Evolutionary Computation with Mathematica , 2001 .

[55]  M. Michalewicz Plants to ecosystems: advances in computational life sciences , 1997 .

[56]  Christian Jacob,et al.  Swarms and Genes: Exploring λ - Switch Gene Regulation through Swarm Intelligence , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[57]  Jörg Denzinger,et al.  Combining Coaching and Learning to Create Cooperative Character Behavior , 2005, CIG.

[58]  Christian Jacob,et al.  Swarm grammars: growing dynamic structures in 3D agent spaces , 2007, Digit. Creativity.

[59]  Jordan B. Pollack,et al.  Evolving L-systems to generate virtual creatures , 2001, Comput. Graph..

[60]  Jing Yu Evolutionary design of 2D fractals and 3D plant structures for computer graphics , 2004 .

[61]  Christian Jacob,et al.  Genetic L-System Programming , 1994, PPSN.

[62]  P. Schuster How does complexity arise in evolution: Nature's recipe for mastering scarcity, abundance, and unpredictability , 1996 .

[63]  Dawn C. Walker,et al.  The virtual cell - a candidate co-ordinator for 'middle-out' modelling of biological systems , 2009, Briefings Bioinform..

[64]  Christian Jacob,et al.  Evolutionary exploration of dynamic swarm behaviour , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[65]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1987, SIGGRAPH.

[66]  René Doursat,et al.  Organically Grown Architectures: Creating Decentralized, Autonomous Systems by Embryomorphic Engineering , 2008, Organic Computing.

[67]  Lee Spector,et al.  Emergence of Collective Behavior in Evolving Populations of Flying Agents , 2003, Genetic Programming and Evolvable Machines.

[68]  Christian Jacob,et al.  Biomolecular swarms – an agent-based model of the lactose operon , 2004, Natural Computing.

[69]  David Phillips,et al.  A Graph-Based Developmental Swarm Representation and Algorithm , 2010, ANTS Conference.

[70]  Terence Soule,et al.  Breeding swarms: a new approach to recurrent neural network training , 2005, GECCO '05.

[71]  Timothy Davison,et al.  EvoShelf: A System for Managing and Exploring Evolutionary Data , 2010, PPSN.

[72]  Frank R. Abate,et al.  The new Oxford American dictionary , 2001 .

[73]  Christian Jacob,et al.  Virtual Constructive Swarm Compositions and Inspirations , 2008, EvoWorkshops.

[74]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[75]  Christian Jacob,et al.  Adaptive Modularization of the MAPK Signaling Pathway Using the Multiagent Paradigm , 2010, PPSN.