Majority Gates and Circular Computation in Slime Mould

Slime mould has been proven to be a fruitful living substrate for implementing a wide range of computing circuits from computational geometry to collision-based logical circuits to robot control. It is apparent, however, that constructing working real-time universal processors from the slime mould is non-trivial task. We explore here similarities between development of slime mould protoplasmic tubes, transportation of cytoplasm inside the tubes and dynamics of propagating patterns in cellular automata. Based on these analogies we will propose computing devices realisable in the living slime mould.

[1]  A. Adamatzky,et al.  Cellular automaton supercolliders , 2011, 1105.4332.

[2]  Manfred Kudlek,et al.  New Small Universal Circular Post Machines , 2001, FCT.

[3]  Andrew Adamatzky Collision-Based Computing , 2002, Springer London.

[4]  Andrew Adamatzky,et al.  Physarum Machines: Computers from Slime Mould , 2010 .

[5]  Norman Margolus,et al.  Physics-Like Models of Computation , 2002, Collision-Based Computing.

[6]  Andrew Adamatzky,et al.  On the Internalisation, Intraplasmodial Carriage and Excretion of Metallic Nanoparticles in the Slime Mould, Physarum Polycephalum , 2011, Int. J. Nanotechnol. Mol. Comput..

[7]  Hector Zenil,et al.  Computation and Universality: Class IV versus Class III Cellular Automata , 2013, J. Cell. Autom..

[8]  Andrew Adamatzky,et al.  On logical gates in precipitating medium: Cellular automaton model , 2008 .

[9]  Kenneth Steiglitz,et al.  Computing with Solitons: A Review and Prospectus , 2002, Collision-Based Computing.

[10]  Andrew Adamatzky,et al.  Slime Mould Logic Gates Based on Frequency Changes of Electrical Potential Oscillation , 2014, Biosyst..

[11]  Genaro Juárez Martínez,et al.  Computation with competing patterns in Life-like automaton , 2010, 2010 International Conference on High Performance Computing & Simulation.

[12]  Felix Hueber,et al.  Feynman And Computation Exploring The Limits Of Computers , 2016 .

[13]  Norman Margolus,et al.  Universal Cellular Automata Based on the Collisions of Soft Spheres , 2008, Collision-Based Computing.

[14]  Andrew Adamatzky,et al.  Slime mould logical gates: exploring ballistic approach , 2010, 1005.2301.

[15]  Marvin Minsky,et al.  Computation : finite and infinite machines , 2016 .

[16]  Andrew Adamatzky,et al.  Toward Hybrid Nanostructure-Slime Mould Devices , 2015 .

[17]  Harold V. McIntosh One Dimensional Cellular Automata , 2009 .

[18]  Jonathan W. Mills,et al.  The nature of the Extended Analog Computer , 2008 .

[19]  Andrew Schumann,et al.  PHYSARUM SPATIAL LOGIC , 2011 .

[20]  Michael A Arbib,et al.  Theories of abstract automata (Prentice-Hall series in automatic computation) , 1969 .

[21]  Andrew Adamatzky,et al.  Slime mold microfluidic logical gates , 2014 .

[22]  Stephen Wolfram,et al.  Universality and complexity in cellular automata , 1983 .

[23]  Andrew Adamatzky,et al.  Hot ice computer , 2009, 0908.4426.

[24]  Andrew Wuensche Exploring Discrete Dynamics , 2011 .

[25]  Juan Carlos Seck Tuoh Mora,et al.  Reproducing the Cyclic Tag System Developed by Matthew Cook with Rule 110 Using the Phases fi_1 , 2011, J. Cell. Autom..

[26]  Masashi Aono,et al.  Robust and emergent Physarum logical-computing. , 2004, Bio Systems.

[27]  Margolus,et al.  Cellular-automata supercomputers for fluid-dynamics modeling. , 1986, Physical review letters.

[28]  Wolfgang Porod,et al.  Quantum-Dot Cellular Automata: Line and Majority Logic Gate , 1999 .

[29]  H. Cantiello,et al.  Ionic wave propagation along actin filaments. , 2004, Biophysical journal.

[30]  Jeff Jones,et al.  Towards Physarum Binary Adders , 2010, Biosyst..

[31]  T. Toffoli Non-Conventional Computers , 1998 .

[32]  M Mitchell,et al.  Life and evolution in computers. , 2001, History and philosophy of the life sciences.

[33]  Andrew Adamatzky,et al.  Slime mould foraging behaviour as optically coupled logical operations , 2015, Int. J. Gen. Syst..

[34]  Tommaso Toffoli,et al.  Design Principles for Achieving High-Performance Submicron Digital Technologies , 2002, Collision-Based Computing.

[35]  Matthew Cook,et al.  Universality in Elementary Cellular Automata , 2004, Complex Syst..

[36]  Genaro Juárez Martínez,et al.  Majority Adder Implementation by Competing Patterns in Life-Like Rule B2/S2345 , 2010, UC.

[37]  Hector Zenil,et al.  A Computable Universe: Understanding and Exploring Nature As Computation , 2012 .

[38]  Andrew Adamatzky,et al.  Slime mould electronic oscillators , 2014, ArXiv.