Effects of finishing in abrasive fluid machining on microholes fabricated by EDM

This research investigated the effects of the fine-finishing process on microholes in abrasive fluid machining (AFM). Microholes on stainless steel (SUS 304) and titanium alloy (Ti-6Al-4V) plates were fabricated using a deep drilling machine of electrical discharge machining (EDM) prior to AFM. In the experiment, the Taguchi method was adopted to explore the effects of the machining parameters associated with AFM on the experimentally observed values, such as the material removal rate (MRR) and differences between the dimensions of the entrance and the exit of the microhole. Furthermore, the improvement in the shape precision of the microhole fabricated by EDM and subsequently fine-finished by AFM was also elucidated by using a scanning electron microscope (SEM). The significant machining parameters and the optimal combination levels of the machining parameters were identified by analysis of variance (ANOVA) and the S/N (signal-to-noise) ratio response graph obtained from the analysis of the experimental data.