On the Complexity of Computing the Greatest Common Divisor of Several Univariate Polynomials

This paper is devoted to present a deterministic algorithm computing the greatest common divisor of several univariate polynomials with coefficients in an integral domain with the best known complexity bound when integer coefficients are considered. More precisely, if n is a bound for the degree of the t+1 integer polynomials whose greatest common divisor is to be computed and M is a bound for the size of those polynomials then such greatest common divisor is computed by means of O(tn3) arithmetic operations involving integers whose size is in O(n4M) (which is independent of t).

[1]  Alkiviadis G. Akritas,et al.  Elements of Computer Algebra with Applications , 1989 .

[2]  W. Habicht Eine Verallgemeinerung des Sturmschen Wurzelzählverfahrens , 1948 .

[3]  Stuart J. Berkowitz,et al.  On Computing the Determinant in Small Parallel Time Using a Small Number of Processors , 1984, Inf. Process. Lett..

[4]  H. Brown,et al.  Computational Problems in Abstract Algebra , 1971 .

[5]  Joachim von zur Gathen,et al.  Parallel algorithms for algebraic problems , 1983, SIAM J. Comput..

[6]  Laureano González-Vega,et al.  Spécialisation de la suite de Sturm et sous-résulants , 1990, RAIRO Theor. Informatics Appl..

[7]  L. González-Vega An elementary proof of Barnett's theorem about the greatest common divisor of several univarlate polynomials , 1996 .

[8]  K. Mulmuley A fast parallel algorithm to compute the rank of a matrix over an arbitrary field , 1987, Comb..

[9]  S. Barnett,et al.  Degrees of greatest common divisors of invariant factors of two regular polynomial matrices , 1969, Mathematical Proceedings of the Cambridge Philosophical Society.

[10]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[11]  J. Calmet Computer Algebra , 1982 .

[12]  George E. Collins,et al.  Subresultants and Reduced Polynomial Remainder Sequences , 1967, JACM.

[13]  R. Loos Generalized Polynomial Remainder Sequences , 1983 .

[14]  Some computational problems and methods related to invariant factors and control theory , 1970 .

[15]  Maurice Mignotte,et al.  Mathematics for computer algebra , 1991 .

[16]  M. Mignotte Some Useful Bounds , 1983 .

[17]  S. Barnett,et al.  Greatest common divisor of several polynomials , 1971, Mathematical Proceedings of the Cambridge Philosophical Society.

[18]  Joseph F. Traub,et al.  On Euclid's Algorithm and the Theory of Subresultants , 1971, JACM.

[19]  J. Rafael Sendra,et al.  An Extended Polynomial GCD Algorithm Using Hankel Matrices , 1992, J. Symb. Comput..

[20]  S. Barnett Polynomials and linear control systems , 1983 .

[21]  C. Macduffee Some Applications of Matrices in the Theory of Equations , 1950 .