Ruthenium carborane complexes: a relationship between the structure, electrochemical properties, and reactivity in catalysis of polymerization processes

[1]  D. F. Grishin,et al.  Mononuclear closo-ruthenacarborane complexes containing a rare eight-membered metal-diphosphine ring , 2012 .

[2]  E. A. Sergeeva,et al.  New Acyclic (π-Allyl)-closo-rhodacarboranes with an Agostic CH3···Rh Bonding Interaction That Operate as Unmodified Rhodium-Based Catalysts for Alkene Hydroformylation , 2012 .

[3]  Krzysztof Matyjaszewski,et al.  Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives , 2012 .

[4]  D. F. Grishin,et al.  Efficient catalytic systems based on paramagnetic closo-ruthenacarboranes for the controlled synthesis of polymers , 2011 .

[5]  D. F. Grishin,et al.  Carborane complexes of ruthenium(III): studies on thermal reaction chemistry and the catalyst design for atom transfer radical polymerization of methyl methacrylate. , 2011, Inorganic chemistry.

[6]  V. Novikov,et al.  New Rhodacarborane−Phosphoramidite Catalyst System for Enantioselective Hydrogenation of Functionalized Olefins and Molecular Structure of the Chiral Catalyst Precursor [3,3-{(S)-PipPhos}2-3-H-1,2-(o-xylylene)-closo-3,1,2-RhC2B9H9] , 2011 .

[7]  Krzysztof Matyjaszewski,et al.  Transition metal catalysts for controlled radical polymerization , 2010 .

[8]  M. Ouchi,et al.  Transition metal-catalyzed living radical polymerization: toward perfection in catalysis and precision polymer synthesis. , 2009, Chemical reviews.

[9]  D. F. Grishin,et al.  Ruthenium complexes in the controlled synthesis of macromolecules , 2008 .

[10]  K. Matyjaszewski,et al.  Understanding atom transfer radical polymerization: effect of ligand and initiator structures on the equilibrium constants. , 2008, Journal of the American Chemical Society.

[11]  I. Chizhevsky Large-cage (11–13-vertex) dicarbon metallacarboranes of platinum metals with mono- and polycyclic diolefin ligands , 2007 .

[12]  R. Poli Relationship between one-electron transition-metal reactivity and radical polymerization processes. , 2006, Angewandte Chemie.

[13]  D. F. Grishin,et al.  Facile method for the synthesis of ruthenacarboranes, diamagnetic 3,3-[Ph2P(CH2)nPPh2]-3-H-3-Cl-closo-3,1,2-RuC2B9H11 (n = 3 or 4) and paramagnetic 3,3-[Ph2P(CH2)nPPh2]-3-Cl-closo-3,1,2-RuC2B9H11 (n = 2 or 3), as efficient initiators of controlled radical polymerization of vinyl monomers , 2006 .

[14]  A. Richel,et al.  Electrochemistry as a correlation tool with the catalytic activities in [RuCl2(p-cymene)(PAr3)]-catalysed Kharasch additions , 2006 .

[15]  I. Godovikov,et al.  Facile formation of exo-nido→closo-rearrangement products upon the replacement of PPh3 ligands with bis(diphenylphosphino)alkanes in “three-bridge” ruthenacarborane 5,6,10-[RuCl(PPh3)2]-5,6,10-(µ-H)3-10-H-exo-nido-7,8-C2B9H8 , 2005 .

[16]  I. Godovikov,et al.  Chiral paramagnetic closo-ruthenacarboranes via phosphine–diphosphine displacement reaction of “three-bridge” exo-nido-ruthenacarboranes: Molecular Structure of (−)-[closo-3-Cl-3,3-{(Ph2PCHCH3)2CH2}-3,1,2-RuC2B9H11] and its ortho-cycloboronated derivative , 2005 .

[17]  E. Molins,et al.  The modulating possibilities of dicarbollide clusters: optimizing the Kharasch catalysts. , 2003, Journal of the American Chemical Society.

[18]  C. Ching,et al.  (R)-binap-mediated asymmetric hydrogenation with a rhodacarborane catalyst in ionic-liquid media. , 2003, Angewandte Chemie.

[19]  K. Matyjaszewski,et al.  Tridentate Nitrogen-Based Ligands in Cu-Based ATRP: A Structure−Activity Study , 2001 .

[20]  F. Teixidor,et al.  Forced exo-nido rhoda and ruthenacarboranes as catalyst precursors: a review , 2000 .

[21]  K. Matyjaszewski,et al.  Cyclic voltammetric studies of copper complexes catalyzing atom transfer radical polymerization , 2000 .

[22]  M. Sawamoto,et al.  Metal Alkoxides as Additives for Ruthenium(II)-Catalyzed Living Radical Polymerization1 , 2000 .

[23]  M. Sawamoto,et al.  Catalytic activities of ruthenium(II) complexes in transition-metal-mediated living radical polymerization: Polymerization, model reaction, and cyclic voltammetry , 2000 .

[24]  W. Heineman,et al.  Cyclic voltammetry , 2005 .

[25]  J. Jeffery,et al.  The Reagent [K(18-crown-6)][RuH(PPh3)2(η5-7,8-C2B9H11)] as a Precursor to New Ruthenacarborane Complexes† , 1999 .

[26]  M. Hawthorne,et al.  Synthesis of Mixed-Metal (Ru−Rh) Bimetallacarboranes via exo-nido- and closo-Ruthenacarboranes. Molecular Structures of (η4-C8H12)Rh(μ-H)Ru(PPh3)2(η5-C2B9H11) and (CO)(PPh3)Rh(μ-H)Ru(PPh3)2(η5-C2B9H11) and Their Anionic closo-Ruthenacarborane Precursors , 1999 .

[27]  J. Liégeois,et al.  Ligand effects in the hydrogenation of methacycline to doxycycline and epi-doxycycline catalysed by rhodium complexes molecular structure of the key catalyst [closo-3,3-(η2,3-C7H7CH2)-3,1,2-RhC2B9H11] , 1997 .

[28]  David K. Gosser,et al.  Cyclic Voltammetry: Simulation and Analysis of Reaction Mechanisms , 1993 .

[29]  M. Hawthorne,et al.  Metallacarboranes in catalysis. 8. I: Catalytic hydrogenolysis of alkenyl acetates. II: Catalytic alkene isomerization and hydrogenation revisited , 1989 .

[30]  S. Gubin Application of electrochemical methods in the organometallic chemistry of transition metal π-complexes , 1970 .

[31]  C. G. Zoski Handbook of Electrochemistry , 2006 .

[32]  D. F. Grishin,et al.  Ruthenium carborane complexes in the controlled radical polymerization of methyl methacrylate , 2006 .

[33]  A. Gordon,et al.  The Chemist's Companion: A Handbook of Practical Data, Techniques, and References , 1972 .