Evaluating the Impact of Syntax and Semantics on Emotion Recognition from Text

In this paper, we systematically analyze the effect of incorporating different levels of syntactic and semantic information on the accuracy of emotion recognition from text. We carry out the evaluation in a supervised learning framework, and employ tree kernel functions as an intuitive and effective way to generate different feature spaces based on structured representations of the input data. We compare three different formalisms to encode syntactic information enriched with semantic features. These features are obtained from hand-annotated resources as well as distributional models. For the experiments, we use three datasets annotated according to the same set of emotions. Our analysis indicates that shallow syntactic information can positively interact with semantic features. In addition, we show how the three datasets can hardly be combined to learn more robust models, due to inherent differences in the linguistic properties of the texts or in the annotation.

[1]  Saif Mohammad,et al.  Portable Features for Classifying Emotional Text , 2012, NAACL.

[2]  Jean-Michel Renders,et al.  Word-Sequence Kernels , 2003, J. Mach. Learn. Res..

[3]  Roberto Basili,et al.  Tree Kernels for Semantic Role Labeling , 2008, CL.

[4]  François-Régis Chaumartin,et al.  UPAR7: A knowledge-based system for headline sentiment tagging , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[5]  Zornitsa Kozareva,et al.  UA-ZBSA: A Headline Emotion Classification through Web Information , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[6]  Dipankar Das,et al.  Identifying Emotional Expressions, Intensities and Sentence Level Emotion Tags Using a Supervised Framework , 2010, PACLIC.

[7]  Saif Mohammad,et al.  From once upon a time to happily ever after: Tracking emotions in mail and books , 2012, Decis. Support Syst..

[8]  Stan Szpakowicz,et al.  Identifying Expressions of Emotion in Text , 2007, TSD.

[9]  Andrea Esuli,et al.  SENTIWORDNET: A Publicly Available Lexical Resource for Opinion Mining , 2006, LREC.

[10]  Stephan Bloehdorn,et al.  Semantic Kernels for Text Classification Based on Topological Measures of Feature Similarity , 2006, Sixth International Conference on Data Mining (ICDM'06).

[11]  Michael Collins,et al.  Convolution Kernels for Natural Language , 2001, NIPS.

[12]  Roman Grundkiewicz,et al.  Automatic Extraction of Polish Language Errors from Text Edition History , 2013, TSD.

[13]  Owen Rambow,et al.  Sentiment Analysis of Twitter Data , 2011 .

[14]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[15]  Stan Szpakowicz,et al.  Using Roget’s Thesaurus for Fine-grained Emotion Recognition , 2008, IJCNLP.

[16]  M. Aizerman,et al.  Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning , 1964 .

[17]  Nello Cristianini,et al.  Classification using String Kernels , 2000 .

[18]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .

[19]  Roberto Basili,et al.  Exploiting Syntactic and Shallow Semantic Kernels for Question Answer Classification , 2007, ACL.

[20]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[21]  P. Ekman Facial expression and emotion. , 1993, The American psychologist.

[22]  David Haussler,et al.  Convolution kernels on discrete structures , 1999 .

[23]  Cecilia Ovesdotter Alm,et al.  Affect in Text and Speech , 2009 .

[24]  Dan Klein,et al.  Accurate Unlexicalized Parsing , 2003, ACL.

[25]  Richard Wicentowski,et al.  SWAT-MP:The SemEval-2007 Systems for Task 5 and Task 14 , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[26]  Neil D. Lawrence,et al.  Missing Data in Kernel PCA , 2006, ECML.

[27]  Diana Inkpen,et al.  Using a Heterogeneous Dataset for Emotion Analysis in Text , 2011, Canadian Conference on AI.

[28]  Alessandro Moschitti,et al.  Efficient Convolution Kernels for Dependency and Constituent Syntactic Trees , 2006, ECML.

[29]  Carlo Strapparava,et al.  WordNet Affect: an Affective Extension of WordNet , 2004, LREC.

[30]  Michael Collins,et al.  New Ranking Algorithms for Parsing and Tagging: Kernels over Discrete Structures, and the Voted Perceptron , 2002, ACL.

[31]  Carlo Strapparava,et al.  Learning to identify emotions in text , 2008, SAC '08.