Optical and visual quality of real intraocular lenses physically projected on the patient's eye.

Visual simulators aim at evaluating vision with ophthalmic corrections prior to prescription or implantation of intraocular lenses (IOLs) in the patient's eye. In the present study, we present the design, implementation, and validation of a new IOL-in-cuvette channel in an Adaptive Optics visual simulator, which provides an alternative channel for pre-operative simulation of vision with IOLs. The IOL is projected on the pupil's plane of the subject by using a Rassow system. A second lens, the Rassow lens, compensates for an IOL of 20 D while other powers can be corrected with a Badal system within a 5 D range. The new channel was evaluated by through-focus (TF) optical quality in an artificial eye on bench, and by TF visual acuity in patients, with various IOL designs (monofocal, diffractive trifocal, and refractive extended depth of focus).