Model dispersive media in finite-difference time-domain method with complex-conjugate pole-residue pairs

In this letter, we show that both Debye poles and Lorentz pole pairs are special cases of complex-conjugate pole-residue pairs, and the general form of such pairs is in fact far more efficient than the commonly used Debye poles and Lorentz pole pairs for modeling real dispersive media with the finite-difference time-domain method. We first derive an alternative formulation of the auxiliary differential equation method for arbitrary dispersive media based on general complex-conjugate pole-residue pairs. We then numerically demonstrate the efficiency of using these pairs in modeling dispersive media

[1]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[2]  José A. Pereda,et al.  FDTD modeling of wave propagation in dispersive media by using the Mobius transformation technique , 2002 .

[3]  Carey M. Rappaport,et al.  A general method for FDTD modeling of wave propagation in arbitrary frequency-dispersive media , 1997 .

[4]  M. A. Stuchly,et al.  Simple treatment of multi-term dispersion in FDTD , 1997 .

[5]  김덕영 [신간안내] Computational Electrodynamics (the finite difference time - domain method) , 2001 .

[6]  Qing Huo Liu,et al.  An FDTD algorithm with perfectly matched layers for general dispersive media , 2000 .

[7]  A. Taflove,et al.  Finite-difference time-domain model of lasing action in a four-level two-electron atomic system. , 2004, Optics express.

[8]  R. Osgood,et al.  Simulation of mode-locked surface-emitting lasers through a finite-difference time-domain algorithm. , 2004, Optics letters.

[9]  Jeffrey L. Young,et al.  A summary and systematic analysis of FDTD algorithms for linearly dispersive media , 2001 .

[10]  M. Fox Optical Properties of Solids , 2010 .

[11]  Dennis M. Sullivan,et al.  Z-transform theory and the FDTD method , 1996 .

[12]  Shaobin Liu,et al.  A novel FDTD formulation for dispersive media , 2003, IEEE Microwave and Wireless Components Letters.

[13]  P. D. Dapkus,et al.  Active semiconductor microdisk devices , 2002 .

[14]  A. Nagra,et al.  FDTD analysis of wave propagation in nonlinear absorbing and gain media , 1998 .

[15]  P. Kosmas,et al.  Modeling with the FDTD method for microwave breast cancer detection , 2004, IEEE Transactions on Microwave Theory and Techniques.

[16]  H. Lue,et al.  A new method developed in measuring the dielectric constants of metallic nanoparticles by a microwave double-cavity dielectric resonator , 2003, IEEE Microwave and Wireless Components Letters.

[17]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[18]  Raymond J. Luebbers,et al.  FDTD for Nth-order dispersive media , 1992 .

[19]  David A. B. Miller,et al.  Quantum well carrier sweep out: relation to electroabsorption and exciton saturation , 1991 .

[20]  Allen Taflove,et al.  FDTD Maxwell's equations models for nonlinear electrodynamics and optics , 1997 .

[21]  Y. Takayama,et al.  Reinterpretation of the auxiliary differential equation method for FDTD , 2002, IEEE Microwave and Wireless Components Letters.

[22]  W Fichtner,et al.  Auxiliary differential equation: efficient implementation in the finite-difference time-domain method. , 1997, Optics letters.

[23]  R. J. Luebbers,et al.  Piecewise linear recursive convolution for dispersive media using FDTD , 1996 .

[24]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[25]  W. Freude,et al.  High-order FDTD and auxiliary differential equation formulation of optical pulse propagation in 2-D Kerr and Raman nonlinear dispersive media , 2004, IEEE Journal of Quantum Electronics.

[26]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .