Reappraisal of the 1887 Ligurian earthquake (western Mediterranean) from macroseismicity, active tectonics and tsunami modelling

SUMMARY Early in the morning of 1887 February 23, a damaging earthquake hit the towns along the Italian and French Riviera. The earthquake was followed by a tsunami with a maximum run-up of 2m near Imperia, Italy. At least 600 people died, mainly due to collapsing buildings. This ‘Ligurian earthquake’ occurred at the junction between the southern French–Italian Alps and the Ligurian Basin. For such a historical event, the epicentre and the equivalent magnitude are difficult to characterize with any degree of precision, and the tectonic fault responsible for the earthquake is still under debate today. The recent MALISAR marine geophysical survey allowed the identification of a large system of active faults. We propose that the rupture of some of the segments belonging to this 80-km-long northern Ligurian Faults system connected to a shallow-dipping major thrust plane at depth was the source of the 1887 Ligurian earthquake. We investigated the macroseismic data from the SISFRANCE-08 and DBMI-04 historical databases using several models of intensity attenuation with distance and focal depth. The modelling results are consistent with the off-shore location, with an epicentre around 43.70 ◦ –43.78 ◦ N and 7.81 ◦ –8.07 ◦ E, and with a magnitude Mw in the range of 6.3–7.5. Numerous earthquake source scenarios have been tested on the tide gauge record at Genoa harbour. As a result, we present seven characteristic source earthquake scenarios for a shallow strong earthquake occurring below the northern Ligurian margin. The modelled tide gauge records were analysed with the help of basic statistical tools and a simple harmonic analysis, to extract the wave spectrum characteristics. This analysis indicates that scenarios of a magnitude Mw of6.8–6.9alongareverseN55 ◦ Estrikingfaultarethebestcandidatestoexplaintheknown characteristics of the tsunami that followed. The best-fitting scenarios comprise a 70 ◦ -dipping southward fault plane with Mw 6.8 and a 16 ◦ -dipping northward fault plane with Mw 6.9, both with reverse kinematics. Taking into account the geometry of the active faults, the location of the macroseismic epicentre and the morphotectonic evolution of the continental slope, we propose that the 1887 Ligurian earthquake corresponded to the reverse faulting of a N55 ◦ E striking fault plane dipping to the north with a coseismic slip of 1.5m.

[1]  F. Perrier,et al.  On some electrical effects of the 1887 Ligurian earthquake , 2008 .

[2]  Beno Gutenberg,et al.  Geologische, physikalische und angewandte Erdbebenkunde , 1923 .

[3]  N. N. Ambraseys,et al.  Data for the investigation of the seismic sea-waves in the Eastern Mediterranean , 1962 .

[4]  H. Shimamura,et al.  Moho, crustal architecture and deep deformation under the North Marmara Trough, from the SEISMARMARA Leg 1 offshore–onshore reflection–refraction survey , 2009 .

[5]  E. Chaumillon,et al.  Réactivation tectonique et flexure de la marge continentale Ligure (Méditerranée Occidentale) , 1994 .

[6]  Jean Hernandez,et al.  La rotation miocène inférieur du bloc corso-sarde. Nouvelles contraintes paléomagnétiques sur la fin du mouvement. , 2001 .

[7]  G. Wei,et al.  Time-Dependent Numerical Code for Extended Boussinesq Equations , 1995 .

[8]  M. Ioualalen,et al.  A synoptic picture of the impact of the 26th December 2004 Indian Ocean tsunami on the coast of Sri Lanka , 2010, Environ. Model. Softw..

[9]  N. Pazmino,et al.  Numerical Modelling of the 26th December 2004 Indian Ocean Tsunami for the Southeastern Coast of India , 2010 .

[10]  M. Cushing,et al.  Atlas of macroseismic maps for French earthquakes with their principal characteristics , 1994 .

[11]  M. Cattaneo,et al.  A closing Ligurian Sea? , 1992 .

[12]  R. Basili,et al.  The Database of Individual Seismogenic Sources (DISS), version 3: Summarizing 20 years of research on Italy's earthquake geology , 2008 .

[13]  É. Calais,et al.  Active thrust faulting offshore Boumerdes, Algeria, and its relations to the 2003 Mw 6.9 earthquake , 2005 .

[14]  J. Kirby,et al.  BOUSSINESQ MODELING OF WAVE TRANSFORMATION, BREAKING, AND RUNUP. II: 2D , 2000 .

[15]  A. Deschamps,et al.  Active and recent deformation at the Southern Alps – Ligurian basin junction , 2001, Netherlands Journal of Geosciences.

[16]  N. Corradi,et al.  Morphology, distribution and origin of recent submarine landslides of the Ligurian Margin (North-western Mediterranean): some insights into geohazard assessment , 2011 .

[17]  H. Philip,et al.  Modern tectonic stress field in the Mediterranean region: evidence for variation in stress directions at different scales , 1992 .

[18]  D. Spallarossa,et al.  Seismicity and crustal structure beneath the western Ligurian Sea derived from local earthquake tomography , 2001 .

[19]  A. Nercessian,et al.  A Ligurian (Western Mediterranean Sea) geophysical transect revisited , 2001 .

[20]  G. Wei,et al.  A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves , 1995, Journal of Fluid Mechanics.

[21]  J. Chéry,et al.  Why is the Ligurian Basin (Mediterranean Sea) seismogenic? Thermomechanical modeling of a reactivated passive margin , 2008 .

[22]  Laura Graziani,et al.  The New Catalogue of Italian Tsunamis , 2004 .

[23]  Xavier Lurton,et al.  Quantitative characterisation of seafloor substrate and bedforms using advanced processing of multibeam backscatter—Application to Cook Strait, New Zealand , 2011 .

[24]  M. V. Ramana Murthy,et al.  Numerical modeling of the 26th December 2004 India Ocean tsunami at Andaman and Nicobar Islands , 2008 .

[25]  Jean-Claude Sibuet,et al.  Geological evolution of the tethys belt from the atlantic to the pamirs since the LIAS , 1986 .

[26]  Arthur L. Lerner-Lam,et al.  Active thrust front of the Greater Caucasus: The April 29, 1991, Racha earthquake sequence and its tectonic implications , 1995 .

[27]  J. Nocquet,et al.  Plate kinematics of Nubia–Somalia using a combined DORIS and GPS solution , 2006 .

[28]  W. H. Bakun,et al.  Magnitudes and Locations of the 1811–1812 New Madrid, Missouri, and the 1886 Charleston, South Carolina, Earthquakes , 2004 .

[29]  B. Mohammadioun,et al.  Determination of seismic reference motion for nuclear sites in France , 1984 .

[30]  Domenico Giardini,et al.  Evidence for Holocene palaeoseismicity along the Basel—Reinach active normal fault (Switzerland): a seismic source for the 1356 earthquake in the Upper Rhine graben , 2005 .

[31]  G. Lamarche,et al.  Characterizing earthquake recurrence parameters for offshore faults in the low-strain, compressional Kapiti-Manawatu Fault System, New Zealand , 2007 .

[32]  Paolo Baldi,et al.  Kinematics of the Western Africa-Eurasia plate boundary from focal mechanisms and GPS data , 2007 .

[33]  S. Migeon,et al.  Morphotectonic and fault–earthquake relationships along the northern Ligurian margin (western Mediterranean) based on high resolution, multibeam bathymetry and multichannel seismic-reflection profiles , 2011 .

[34]  C. Ranero,et al.  Tsunamigenic slope failure along the Middle America Trench in two tectonic settings , 2004 .

[35]  O. Bellier,et al.  Analyses of the stress field in southeastern France from earthquake focal mechanisms , 2001 .

[36]  The February 23, 1887 tsunami recorded on the Ligurian Coast, western Mediterranean , 1997 .

[37]  L. Reiter Earthquake Hazard Analysis: Issues and Insights , 1991 .

[38]  W. Ryan,et al.  Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere , 1986 .

[39]  A. Deschamps,et al.  Joint multidisciplinary study of the Saint-Sauveur-Donareo fault (lower Var valley, French Riviera): a contribution to seismic hazard assessment in the urban area of Nice , 2011 .

[40]  F. Mulargia,et al.  On the macroseismic magnitudes of the largest Italian earthquakes , 1987 .

[41]  A. Mauffret,et al.  The Western Mediterranean basin geological evolution , 1984 .

[42]  P. Vellutini,et al.  Le microcontinent corso-sarde, sa position initiale: Donnees paleomagnetiques et raccords geologiques , 1976 .

[43]  R. Bayer,et al.  Une nouvelle carte gravimétrique des Alpes occidentales et ses conséquences structurales et tectoniques , 1999 .

[44]  Stephan T. Grilli,et al.  Modeling the 26 December 2004 Indian ocean tsunami : Case study of impact in Thailand - art. no. C07024 , 2007 .

[45]  O. Scotti,et al.  Regional intensity attenuation models for France and the estimation of magnitude and location of historical earthquakes , 2006 .

[46]  S. Christian,et al.  Local tomography and focal mechanisms in the south-western Alps: Comparison of methods and tectonic implications , 2007 .

[47]  E. Eva,et al.  Inferences on active faults at the Southern Alps–Liguria basin junction from accurate analysis of low energy seismicity , 2009 .

[48]  M. Beslier,et al.  Back arc extension, tectonic inheritance, and volcanism in the Ligurian Sea, Western Mediterranean , 2002 .

[49]  W. H. Bakun,et al.  Estimating earthquake location and magnitude from seismic intensity data , 1997, Bulletin of the Seismological Society of America.

[50]  S. Migeon,et al.  Landslide tsunami vulnerability in the Ligurian Sea: case study of the 1979 October 16 Nice international airport submarine landslide and of identified geological mass failures , 2010 .

[51]  M. Ioualalen Sensitivity tests on relations between tsunami signal and seismic rupture characteristics: The 26 December 2004 Indian Ocean event case study , 2009, Environ. Model. Softw..

[52]  P. Gasperini,et al.  Catalogo dei forti terremoti in Italia dal 461 a.C. , 1995 .

[53]  J. Virieux,et al.  Seismic hazard on the French Riviera: observations, interpretations and simulations , 2007 .

[54]  Gianluca Valensise,et al.  Defining seismogenic sources from historical earthquake felt reports , 1999, Bulletin of the Seismological Society of America.

[55]  Roger M. W. Musson,et al.  The comparison of macroseismic intensity scales , 2010 .

[56]  Philip Watts,et al.  Numerical modeling of the 26 November 1999 Vanuatu tsunami , 2006 .

[57]  E. Eva,et al.  Variations of stress directions in the western Alpine arc , 1998 .

[58]  J. Nocquet,et al.  Crustal velocity field of western Europe from permanent GPS array solutions, 1996–2001 , 2003 .

[59]  B. Efron,et al.  The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .

[60]  P. Guennoc,et al.  Pliocene deformation of the north-Ligurian margin (France) : consequences of a south-Alpine crustal thrust , 2004 .

[61]  A. Paul,et al.  Are there really superposed Mohos in the southwestern Alps? New seismic data from fan-profiling reflections , 2007 .

[62]  Laurent Jolivet,et al.  Styles of back‐arc extension in the Central Mediterranean , 1997 .

[63]  J. Nocquet,et al.  Geodetic Measurements of Crustal Deformation in the Western Mediterranean and Europe , 2004 .

[64]  C. Innocent,et al.  Radiometric dating (U/Th) of the lower marine terrace (MIS 5.5) west of Nice (French Riviera): Morphological and neotectonic quantitative implications , 2008 .

[65]  R. Lacassin,et al.  The Basel 1356 earthquake: which fault produced it? , 1994 .

[66]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[67]  J. Angelier,et al.  Structure and evolution of a passive margin in a compressive environment: Example of the south-western Alps–Ligurian basin junction during the Cenozoic , 2011 .

[68]  J. Nocquet,et al.  Active deformation at the southwestern Alps–Ligurian basin junction (France–Italy boundary): Evidence for recent change from compression to extension in the Argentera massif , 2009 .

[69]  G. Ferrari The 1887 Ligurian earthquake: a detailed study from contemporary scientific observations , 1991 .

[70]  M. Ioualalen Séismes, tsunamis et leur calibration : cas de l’événement de Sumatra du 26 décembre 2006 , 2008 .

[71]  E. Pelinovsky,et al.  Modelling of Tsunami Propagation in the Vicinity of the French Coast of the Mediterranean , 2002 .

[72]  Y. Okada Surface deformation due to shear and tensile faults in a half-space , 1985 .

[73]  Philip Watts,et al.  Tsunami hazard from submarine landslides on the Oregon continental slope , 2004 .

[74]  D. Wells,et al.  New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement , 1994, Bulletin of the Seismological Society of America.

[75]  David S. Jones,et al.  Miocene rotation of Sardinia: New paleomagnetic and geochronological constraints and geodynamic implications , 2007 .

[76]  S. L. Soloviev Tsunamigenic zones in the Mediterranean Sea , 1990 .

[77]  L. Pratson,et al.  Source of the great tsunami of 1 April 1946: a landslide in the upper Aleutian forearc , 2004 .

[78]  J. Ritz,et al.  Geometry and kinematics of recent deformation in the Mondy–Tunka area (south‐westernmost Baikal rift zone, Mongolia–Siberia) , 2004 .

[79]  M. Ioualalen,et al.  Reconstructions of the coastal impact of the 2004 Indian Ocean tsunami in the Khao Lak area, Thailand , 2009 .

[80]  G. Courrioux,et al.  3-D modelling of Alpine Mohos in Southwestern Alps , 2010 .

[81]  C. Doglioni,et al.  The Western Mediterranean extensional basins and the Alpine orogen , 1997 .

[82]  Simon McClusky,et al.  GPS constraints on Africa (Nubia) and Arabia plate motions , 2003 .

[83]  A. Deschamps,et al.  The GROSMarin experiment: three dimensional crustal structure of the North Ligurian margin from r , 2011 .

[84]  Fabio Florindo,et al.  Age of the Corsica-Sardinia rotation and Liguro-Provencal Basin spreading: new paleomagnetic and Ar/Ar evidence , 2002 .