A framework for investigating illegal wildlife trade on social media with machine learning

Abstract Article impact statement: Machine learning can be used to automatically monitor and assess illegal wildlife trade on social media platforms.

[1]  Margaret Kosmala,et al.  Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning , 2017, Proceedings of the National Academy of Sciences.

[2]  Christoph Fink,et al.  Machine learning for tracking illegal wildlife trade on social media , 2018, Nature Ecology & Evolution.

[3]  Ehab Eid,et al.  Illegal hunting in Jordan: using social media to assess impacts on wildlife , 2017, Oryx.

[4]  George Wittemyer,et al.  Illegal killing for ivory drives global decline in African elephants , 2014, Proceedings of the National Academy of Sciences.

[5]  Solon Barocas,et al.  Ten simple rules for responsible big data research , 2017, PLoS Comput. Biol..

[6]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[7]  Atte Moilanen,et al.  Identification of policies for a sustainable legal trade in rhinoceros horn based on population projection and socioeconomic models , 2014, Conservation biology : the journal of the Society for Conservation Biology.

[8]  Julio Hernandez-Castro,et al.  Automatic detection of potentially illegal online sales of elephant ivory via data mining , 2015, PeerJ Comput. Sci..

[9]  Katherine F. Smith,et al.  Summarizing the Evidence on the International Trade in Illegal Wildlife , 2010, EcoHealth.

[10]  E. Webb,et al.  “Invisible” wildlife trades: Southeast Asia’s undocumented illegal trade in wild ornamental plants , 2015 .

[11]  Anita Lavorgna,et al.  Wildlife trafficking in the Internet age , 2014 .

[12]  Hank Liao,et al.  Large scale deep neural network acoustic modeling with semi-supervised training data for YouTube video transcription , 2013, 2013 IEEE Workshop on Automatic Speech Recognition and Understanding.

[13]  T. Leggett,et al.  World wildlife crime report 2016: trafficking in protected species , 2016 .

[14]  M. Tsou,et al.  Research challenges and opportunities in mapping social media and Big Data , 2015 .

[15]  James E. M. Watson,et al.  Biodiversity: The ravages of guns, nets and bulldozers , 2016, Nature.

[16]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[17]  IUCN, International Union for Conservation of Nature West Asia/Middle East (WAME) Regional Office In cooperation with Bibliotheca Alexandrina Funded by Ford Foundation Outcome Report on Future of Sustainability Debate in the Arab Region , 2012 .

[18]  R. Dirzo,et al.  Bushmeat hunting and extinction risk to the world's mammals , 2016, Royal Society Open Science.

[19]  Amy Hinsley,et al.  Estimating the extent and structure of trade in horticultural orchids via social media , 2016, Conservation biology : the journal of the Society for Conservation Biology.

[20]  Henrikki Tenkanen,et al.  Prospects and challenges for social media data in conservation science , 2015, Front. Environ. Sci..