Interdiffusion behavior of Mo-Si-B/Al2O3 composite coating on Nb-Si based alloy

[1]  Jiun-Yi Tseng,et al.  Electroplated Ru and RuCo films as a copper diffusion barrier , 2020 .

[2]  W. Shao,et al.  Oxidation and interdiffusion behavior of Mo-Si-B coating on Nb-Si based alloy prepared by spark plasma sintering , 2020 .

[3]  F. Luo,et al.  Isothermal oxidation and interdiffusion behavior of MoSi2/WSi2 compound coating on Nb-Ti-Si based alloy , 2020 .

[4]  W. Shao,et al.  Experimental studies and modeling for the transition from internal to external oxidation of three-phase Nb-Si-Cr alloys , 2018, Progress in Natural Science: Materials International.

[5]  N. Yusof,et al.  Effects of Al2O3 diffusion barrier layer (including Y-containing small oxide precipitates) and nanostructured YSZ top coat on the oxidation behavior of HVOF NiCoCrAlTaY/APS YSZ coatings at 1100 °C , 2018, Corrosion Science.

[6]  Chungen Zhou,et al.  Microstructural evolution and oxidation behaviour of Mo-Si-B coatings on an Nb-16Si-22Ti-7Cr-2Al-2Hf alloy at 1250 °C prepared by spark plasma sintering , 2018, Surface and Coatings Technology.

[7]  W. Shao,et al.  Microstructural evolution and interdiffusion behavior of Mo-Si-B coating on Nb-Si based alloy , 2018 .

[8]  Ping Zhang,et al.  Deposition and oxidation behavior of Mo(Si,Al)2/MoB layered coatings on TZM alloy , 2017 .

[9]  Chang-jiu Li,et al.  Formation of Al2O3 diffusion barrier in cold-sprayed NiCoCrAlY/Ni multi-layered coatings on 304SS substrate , 2016 .

[10]  J. Pelleg Diffusion in Ceramics , 2015 .

[11]  Hu Zhang,et al.  An ultra-high temperature Mo–Si–B based coating for oxidation protection of Nb SS /Nb 5 Si 3 composites , 2015 .

[12]  M. Heilmaier,et al.  Oxidation behavior of pack-cemented Si-B oxidation protection coatings for Mo-Si-B alloys at 1300°C , 2015 .

[13]  Yi Wang,et al.  Oxidation and interdiffusion behavior of Niobium substrate coated MoSi 2 coating prepared by spark plasma sintering , 2014 .

[14]  W. Lijie,et al.  Formation of B-modified MoSi2 coating on pure Mo prepared through HAPC process , 2014 .

[15]  R. Braun,et al.  Oxidation behavior of magnetron sputtered double layer coatings containing molybdenum, silicon and boron , 2014 .

[16]  M. Vilasi,et al.  Effect of tin addition on Nb–Si-based in situ composites. Part I: Structural modifications , 2014 .

[17]  M. Vilasi,et al.  Towards the improvement of the oxidation resistance of Nb-silicides in situ composites: A solid state diffusion approach , 2014 .

[18]  S. Drawin,et al.  Development of silicide coatings to ensure the protection of Nb and silicide composites against high temperature oxidation , 2013 .

[19]  R. Sakidja,et al.  Multicomponent coating for enhanced oxidation resistance of tungsten , 2012 .

[20]  P. Berthod,et al.  On the oxidation mechanism of niobium-base in situ composites , 2012 .

[21]  R. Sakidja,et al.  Oxidation resistant coatings for refractory metal cermets , 2012 .

[22]  R. Ritchie,et al.  Mo‐Si‐B Alloys for Ultrahigh‐Temperature Structural Applications , 2004, Advanced materials.

[23]  P. Tsakiropoulos,et al.  Study of the role of Hf, Mo and W additions in the microstructure of Nb–20Si silicide based alloys , 2011 .

[24]  A. Paul,et al.  Growth mechanism of phases by interdiffusion and atomic mechanism of diffusion in the molybdenum–silicon system , 2011 .

[25]  Hu Zhang,et al.  The effects of melting technologies on the microstructures and properties of Nb–16Si–22Ti–2Al–2Hf–17Cr alloy , 2010 .

[26]  P. Tsakiropoulos,et al.  Study of the role of B addition on the microstructure of the Nb-24Ti-18Si-8B alloy , 2010 .

[27]  Hong Li,et al.  Ion-plated Al―Al2O3 films as diffusion barriers between NiCrAlY coating and orthorhombic-Ti2AlNb alloy , 2010 .

[28]  P. Tsakiropoulos,et al.  Study of the role of Al, Cr and Ti additions in the microstructure of Nb–18Si–5Hf base alloys , 2010 .

[29]  T. Narita,et al.  Improvement in oxidation resistance of a Ni3Al-based superalloy IC6 by rhenium-based diffusion barrier coatings , 2007 .

[30]  B. Bewlay,et al.  A review of very-high-temperature Nb-silicide-based composites , 2003 .

[31]  V. Buscaglia,et al.  Reactive growth of niobium silicides in bulk diffusion couples , 2003 .

[32]  J. H. Westbrook,et al.  Ultrahigh-Temperature Materials for Jet Engines , 2003 .

[33]  D. Neuschütz,et al.  Efficiency of α-alumina as diffusion barrier between bond coat and bulk material of gas turbine blades , 2003 .

[34]  A. J. Gavens,et al.  An X-ray study of residual stresses and bending stresses in free-standing Nb/Nb5Si3 microlaminates , 2000 .

[35]  D. Neuschütz,et al.  Chemical vapor deposition of smooth α-Al2O3 films on nickel base superalloys as diffusion barriers , 1999 .

[36]  R. Cremer,et al.  Surface and interface analysis of PVD Al-O-N and γ-Al2O3 diffusion barriers , 1999 .

[37]  M. Dayananda,et al.  Growth of silicides and interdiffusion in the Mo-Si system , 1999 .

[38]  R. Cremer,et al.  Thermal stability of Al-O-N PVD diffusion barriers , 1998 .

[39]  F. Pettit,et al.  Introduction to the high-temperature oxidation of metals , 2006 .

[40]  S. Shankar,et al.  Interdiffusion and intrinsic diffusion in the Ni AI (δ) phase of the Al-Ni system , 1978 .

[41]  W. Kingery,et al.  Effect of Dopants on the Defect Structure of Single‐Crystal Aluminum Oxide , 1970 .