DNA sequence-based identification of Fusarium: Current status and future directions

Fusarium ranks as one of the world’s most economically destructive and species-rich groups of mycotoxigenic plant pathogens (Aoki et al. 2014). These ubiquitous molds produce a plethora of toxic secondary metabolites, such as trichothecenes, zearalenone, fumonisins, and enniatins, which pose a significant threat to agricultural biosecurity, food safety, and plant, human and animal health (Marasas et al. 1984). Fusarial-induced diseases of virtually every economically important plant cost the global agricultural economy multi-billion euro losses annually. Moreover, phylogenetically diverse fusaria, including plant pathogens (Short et al. 2011), cause infections in humans, with those involving the cornea and nails being the most common (Chang et al. 2006 and references therein). Because fusaria are broadly resistant to the spectrum of antifungals currently available, disseminated infections in patients who are artificially immunosuppressed or immunocompromised and severely neutropenic are typically fatal (Balajee et al. 2009). The likely reservoir of nosocomial fusarioses is the plumbing system, which has been shown to harbor the most common human opportunistic fusaria (Kuchar 1996; Short et al. 2011). Accurate identification of the etiological and/or toxigenic agent is central to disease management and infection control (Wingfield et al. 2012). Thus, the primary focus of this mini-review is to provide a contemporary guide to the following three web-accessible resources for DNA sequence-based ident i f icat ion of Fusarium : FUSARIUM-ID (http://isolate.fusariumdb.org/; Geiser et al. 2004; Park et al. 2010), Fusarium MLST (http:// www.cbs.knaw.nl/fusarium/; O’Donnell et al. 2010), and NCBI GenBank (http://www.ncbi.nlm.nih.gov/). The fol lowing brief overview of Fusarium phylogenetic diversity is provided as background information for the sections on DNA sequence-based identification. Phytoparasitica (2015) 43:583–595 DOI 10.1007/s12600-015-0484-z

[1]  D. Geiser,et al.  Phylogenetic analyses of RPB1 and RPB2 support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria. , 2013, Fungal genetics and biology : FG & B.

[2]  John F. Leslie,et al.  The Fusarium laboratory manual. , 2006 .

[3]  K. O’Donnell,et al.  Novel Fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance. , 2011, Fungal genetics and biology : FG & B.

[4]  D. Geiser,et al.  A two-locus DNA sequence database for typing plant and human pathogens within the Fusarium oxysporum species complex. , 2009, Fungal genetics and biology : FG & B.

[5]  Kerry O'Donnell,et al.  Molecular Phylogenetic Diversity, Multilocus Haplotype Nomenclature, and In Vitro Antifungal Resistance within the Fusarium solani Species Complex , 2008, Journal of Clinical Microbiology.

[6]  W. Gerlach,et al.  The genus Fusarium: A pictorial atlas , 1983 .

[7]  K. O’Donnell,et al.  Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. , 1997, Molecular phylogenetics and evolution.

[8]  R. Ploetz,et al.  Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Priscila Chaverri,et al.  Species delimitation in fungal endophyte diversity studies and its implications in ecological and biogeographic inferences , 2011, Molecular ecology.

[10]  D. Geiser,et al.  The promise and pitfalls of sequence-based identification of plant-pathogenic fungi and oomycetes. , 2010, Phytopathology.

[11]  C. Schardl,et al.  Evolutionary diversification of fungal endophytes of tall fescue grass by hybridization with Epichloë species. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[12]  D. Hibbett,et al.  Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. , 2004, American journal of botany.

[13]  H. Kistler,et al.  Soil Fungal Communities Respond to Grassland Plant Community Richness and Soil Edaphics , 2015, Microbial Ecology.

[14]  P. E. Nelson,et al.  Fusarium species: an illustrated manual for identification. , 1983 .

[15]  D. Hibbett,et al.  Phylogenetic species recognition and species concepts in fungi. , 2000, Fungal genetics and biology : FG & B.

[16]  B. Summerell,et al.  Fusarium: two endophytic novel species from tropical grasses of northern Australia , 2010, Fungal Diversity.

[17]  D. Davis,et al.  An inordinate fondness for Fusarium: phylogenetic diversity of fusaria cultivated by ambrosia beetles in the genus Euwallacea on avocado and other plant hosts. , 2013, Fungal genetics and biology : FG & B.

[18]  J. Guarro,et al.  Sequence-Based Identification of Aspergillus, Fusarium, and Mucorales Species in the Clinical Mycology Laboratory: Where Are We and Where Should We Go from Here? , 2008, Journal of Clinical Microbiology.

[19]  A. Logrieco,et al.  One fungus, one name: defining the genus Fusarium in a scientifically robust way that preserves longstanding use. , 2013, Phytopathology.

[20]  K. O’Donnell,et al.  Molecular systematics and phylogeography of Gibberella fujikuroi species complex , 1998 .

[21]  Ramchandra S. Suthar IN SILICO IDENTIFICATION OF FUSARIUM STRAIN NFCCI 2157 ISOLATED FROM CUMIN WILT , 2011 .

[22]  D. Geiser,et al.  Widespread Occurrence of Diverse Human Pathogenic Types of the Fungus Fusarium Detected in Plumbing Drains , 2011, Journal of Clinical Microbiology.

[23]  W. Gams,et al.  Plectosporium, a new genus for Fusarium, tabacinum, the anamorph of Plectosphaerella cucumerina , 1995 .

[24]  Nils Hallenberg,et al.  Preserving accuracy in GenBank , 2008 .

[25]  G. Samuels,et al.  Microdochium stoveri and Monographella stoveri, new combinations for Fusarium stoveri and Micronectriella stoveri , 1983 .

[26]  K. Seifert,et al.  An overview of the taxonomy, phylogeny, and typification of nectriaceous fungi in Cosmospora, Acremonium, Fusarium, Stilbella, and Volutella , 2011, Studies in mycology.

[27]  Izabela Makalowska,et al.  FUSARIUM-ID v. 1.0: A DNA Sequence Database for Identifying Fusarium , 2004, European Journal of Plant Pathology.

[28]  R. Libeskind-Hadas,et al.  Discordant phylogenies suggest repeated host shifts in the Fusarium-Euwallacea ambrosia beetle mutualism. , 2015, Fungal genetics and biology : FG & B.

[29]  D. Geiser,et al.  Internet-Accessible DNA Sequence Database for Identifying Fusaria from Human and Animal Infections , 2010, Journal of Clinical Microbiology.

[30]  D. Geiser,et al.  Taxonomy and phylogeny of the Fusarium dimerum species group , 2009, Mycologia.

[31]  Lorraine M. McDonnell,et al.  THE PROMISE AND THE PITFALLS , 2007 .

[32]  ZHU-LIANG Yang,et al.  How well do ITS rDNA sequences differentiate species of true morels (Morchella)? , 2012, Mycologia.

[33]  D. Geiser,et al.  Phylogenetic diversity of insecticolous fusaria inferred from multilocus DNA sequence data and their molecular identification via FUSARIUM-ID and Fusarium MLST , 2012, Mycologia.

[34]  B. Slippers,et al.  One fungus, one name promotes progressive plant pathology. , 2012, Molecular plant pathology.

[35]  R. Henrik Nilsson,et al.  Approaching the taxonomic affiliation of unidentified sequences in public databases – an example from the mycorrhizal fungi , 2005, BMC Bioinformatics.

[36]  R. Poole,et al.  A highly conserved nuclear gene for low-level phylogenetics: elongation factor-1 alpha recovers morphology-based tree for heliothine moths. , 1995, Molecular biology and evolution.

[37]  Yong-Hwan Lee,et al.  Cyber infrastructure for Fusarium: three integrated platforms supporting strain identification, phylogenetics, comparative genomics and knowledge sharing , 2010, Nucleic Acids Res..

[38]  J. Townsend,et al.  PhyDesign: an online application for profiling phylogenetic informativeness , 2011, BMC Evolutionary Biology.

[39]  M. Blackwell The fungi: 1, 2, 3 ... 5.1 million species? , 2011, American journal of botany.

[40]  Seung-Beom Hong,et al.  The Amsterdam Declaration on Fungal Nomenclature , 2011, IMA fungus.

[41]  A MULTILOCUS GENEALOGICAL APPROACH TO PHYLOGENETIC SPECIES RECOGNITION IN THE MODEL EUKARYOTE NEUROSPORA , 2003, Evolution; international journal of organic evolution.

[42]  S. A. Boers,et al.  High-Throughput Multilocus Sequence Typing: Bringing Molecular Typing to the Next Level , 2012, PloS one.

[43]  D. Hawksworth The magnitude of fungal diversity: the 1.5 million species estimate revisited * * Paper presented at , 2001 .

[44]  Kenji Matsuura,et al.  Reconstructing the early evolution of Fungi using a six-gene phylogeny , 2006, Nature.

[45]  John L. Spouge,et al.  Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi , 2012, Proceedings of the National Academy of Sciences.

[46]  M. Garbelotto,et al.  A sequence database for the identification of ectomycorrhizal basidiomycetes by phylogenetic analysis , 1998 .

[47]  W. Marasas,et al.  Toxigenic Fusarium species. Identity and mycotoxicology. , 1984 .

[48]  D. Geiser,et al.  Systematics of key phytopathogenic Fusarium species: current status and future challenges , 2014, Journal of General Plant Pathology.

[49]  S. Bhatt,et al.  IN SILICO IDENTIFICATION OF FUSARIUM STRAIN NFCCI 2157 ISOLATEDFROM CUMIN WILT , 2011 .

[50]  P. Crous,et al.  Generic concepts in Nectriaceae , 2015, Studies in mycology.

[51]  J. Brownstein,et al.  Emerging fungal threats to animal, plant and ecosystem health , 2012, Nature.

[52]  D. Geiser,et al.  Novel Multilocus Sequence Typing Scheme Reveals High Genetic Diversity of Human Pathogenic Members of the Fusarium incarnatum-F.equiseti and F. chlamydosporum Species Complexes within the United States , 2009, Journal of Clinical Microbiology.

[53]  Beryl B. Simpson,et al.  Economic Botany: Plants in Our World , 1986 .