Oxygen Consumption by Sea Turtle (Chelonia, Caretta) Eggs during Development

Sea turtle (Chelonia, Caretta) eggs consume O₂ throughout their 55-65 day incubation. The pattern of O₂ uptake (at 30 C) appears sigmoidal. The rate of O₂ uptake increases rapidly during the second half of incubation, slowing slightly just prior to hatching. The maximum O₂ uptake (\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{wasysym} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document}$${\mathrm{\dot{V}_{O_{2max}}}}$$\end{document}) occurs just prior to hatching and ranges from 90 to 137 cm³ O₂ STPD · day⁻¹. The total O₂ consumed during incubation (at 30 C) ranges from 40 to 60 cm³ O₂ STPD per gram of initial egg mass. This value is about one-half the O₂ consumed per gram of avian egg mass. Mass appears to be the primary determinant of egg \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{wasysym} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document}$${\mathrm{\dot{V}_{O_{2}}}}$$\end{document} for the reptilian eggs examined, although incubation period has a slight inverse influence of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{wasysym} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document}$${\mathrm{\dot{V}_{O_{2max}}}}$$\end{document}. The total O₂ consumed by the eggs of reptiles is directly influenced by egg mass and incubation time. At similar egg masses, the O₂ cost of incubation increases as species-specific incubation time increases.

[1]  Harold F. Hirth,et al.  Some Aspects of the Nesting Behavior and Reproductive Biology of Sea Turtles , 1980 .

[2]  Anastasia J. Romanoff,et al.  Biochemistry of the Avian Embryo , 1967 .

[3]  J. Hart,et al.  Use of the Pauling oxygen analyzer for measurement of oxygen consumption of animals in open-circuit systems and in a short-lag, closed-circuit apparatus. , 1957, Journal of applied physiology.

[4]  R. Dmi’el Growth and metabolism in snake embryos. , 1970, Journal of embryology and experimental morphology.

[5]  R. Ricklefs,et al.  A Graphical Method of Fitting Equations to Growth Curves , 1967 .

[6]  D. F. Hoyt,et al.  Respiration of avian embryos - a comparative analysis. , 1980, Respiration physiology.

[7]  R. Seymour,et al.  Adaptations to Underground Nesting in Birds and Reptiles , 1980 .

[8]  D. F. Hoyt,et al.  Metabolism of Avian Embryos: Patterns in Altricial and Precocial Birds , 1979, Physiological Zoology.

[9]  C. Vleck,et al.  Patterns of Metabolism and Growth in Avian Embryos , 1980 .

[10]  G. Whittow,et al.  Oxygen Consumption, Gas Exchange, and Growth of Embryonic Wedge-Tailed Shearwaters (Puffinus pacificus chlororhynchus) , 1980, Physiological Zoology.

[11]  A. Carr,et al.  Ecologic Implications of Size and Growth in Chelonia , 1970 .

[12]  H. Prange,et al.  Oxygen Consumption and Mechanisms of Gas Exchange of Green Turtle (Chelonia mydas) Eggs and Hatchlings , 1974 .

[13]  R. Lovrien Manometric and Biochemical Techniques , 1973 .

[14]  C. Vleck,et al.  Embryonic Metabolism of the Fork-Tailed Storm Petrel: Physiological Patterns during Prolonged and Interrupted Incubation , 1980, Physiological Zoology.

[15]  W. J. Langford Statistical Methods , 1959, Nature.

[16]  R. Ackerman The respiratory gas exchange of sea turtle nests (Chelonia, Caretta). , 1977, Respiration physiology.

[17]  R. Seymour Dinosaur eggs: gas conductance through the shell, water loss during incubation and clutch size , 1979, Paleobiology.

[18]  A. Carr,et al.  Handbook of Turtles , 1952 .