Generalized finite element method enrichment functions for curved singularities in 3D fracture mechanics problems

This paper presents a study of generalized enrichment functions for 3D curved crack fronts. Two coordinate systems used in the definition of singular curved crack front enrichment functions are analyzed. In the first one, a set of Cartesian coordinate systems defined along the crack front is used. In the second case, the geometry of the crack front is approximated by a set of curvilinear coordinate systems. A description of the computation of derivatives of enrichment functions and curvilinear base vectors is presented. The coordinate systems are automatically defined using geometrical information provided by an explicit representation of the crack surface. A detailed procedure to accurately evaluate the surface normal, conormal and tangent vectors along curvilinear crack fronts in explicit crack surface representations is also presented. An accurate and robust definition of orthonormal vectors along crack fronts is crucial for the proper definition of enrichment functions. Numerical experiments illustrate the accuracy and robustness of the proposed approaches.

[1]  Angelo Simone,et al.  Partition of unity-based discontinuous elements for interface phenomena: computational issues , 2004 .

[2]  Mark A Fleming,et al.  ENRICHED ELEMENT-FREE GALERKIN METHODS FOR CRACK TIP FIELDS , 1997 .

[3]  D. Chopp,et al.  Fatigue crack propagation of multiple coplanar cracks with the coupled extended finite element/fast marching method , 2003 .

[4]  Xiangmin Jiao,et al.  Face offsetting: A unified approach for explicit moving interfaces , 2007, J. Comput. Phys..

[5]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[6]  T. Belytschko,et al.  Extended finite element method for three-dimensional crack modelling , 2000 .

[7]  Clarence E. Rose,et al.  What is tensor analysis? , 1938, Electrical Engineering.

[8]  Xiangmin Jiao,et al.  hp‐Generalized FEM and crack surface representation for non‐planar 3‐D cracks , 2009 .

[9]  Y. Murakami Stress Intensity Factors Handbook , 2006 .

[10]  O. C. Zienkiewicz,et al.  A new cloud-based hp finite element method , 1998 .

[11]  Carlos Armando Duarte,et al.  A high‐order generalized FEM for through‐the‐thickness branched cracks , 2007 .

[12]  Ivo Babuška,et al.  Computation of the amplitude of stress singular terms for cracks and reentrant corners , 1988 .

[13]  P. C. Paris,et al.  The Stress Analysis of Cracks Handbook, Third Edition , 2000 .

[14]  A. Peirce Computer Methods in Applied Mechanics and Engineering , 2010 .

[15]  D. Chopp,et al.  Extended finite element method and fast marching method for three-dimensional fatigue crack propagation , 2003 .

[16]  Carlos Armando Duarte,et al.  Extraction of stress intensity factors from generalized finite element solutions , 2005 .

[17]  L. J. Sluys,et al.  A new method for modelling cohesive cracks using finite elements , 2001 .

[18]  I. Babuska,et al.  The partition of unity finite element method , 1996 .

[19]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[20]  Ivo Babuška,et al.  Generalized finite element methods for three-dimensional structural mechanics problems , 2000 .

[21]  P. Keast Moderate-degree tetrahedral quadrature formulas , 1986 .

[22]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[23]  Peter Lancaster,et al.  Curve and surface fitting - an introduction , 1986 .

[24]  John Robert Whiteman,et al.  The mathematics of finite elements and applications : highlights 1993 , 1994 .

[25]  T. Liszka,et al.  A generalized finite element method for the simulation of three-dimensional dynamic crack propagation , 2001 .

[26]  J. Tinsley Oden,et al.  An hp Adaptive Method Using Clouds C , 2006 .

[27]  Hiroshi Tada,et al.  The stress analysis of cracks handbook , 2000 .

[28]  Glaucio H. Paulino,et al.  Stress-intensity factors for surface cracks in functionally graded materials under mode-I thermomechanical loading , 2004 .

[29]  R. V. Dukkipati,et al.  Advanced Engineering Analysis , 1990 .

[30]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model , 2002 .

[31]  R. de Borst,et al.  A consistent geometrically non‐linear approach for delamination , 2002 .

[32]  I. Babuska,et al.  The generalized finite element method , 2001 .

[33]  M. Duflot A study of the representation of cracks with level sets , 2007 .

[34]  T. Belytschko,et al.  New crack‐tip elements for XFEM and applications to cohesive cracks , 2003 .

[35]  Glaucio H. Paulino,et al.  Integration of singular enrichment functions in the generalized/extended finite element method for three‐dimensional problems , 2009 .

[36]  Hongyuan Zha,et al.  Optimizing Surface Triangulation Via Near Isometry with Reference Meshes , 2007, International Conference on Computational Science.

[37]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[38]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[39]  Leon M Keer,et al.  Stress Intensity Factors Handbook, Vol. 3 , 1993 .

[40]  J. Melenk The Partition of Unity MethodI , 1996 .

[41]  P. Steinmann,et al.  A finite element method for the computational modelling of cohesive cracks , 2005 .

[42]  T. Belytschko,et al.  Extended finite element method for cohesive crack growth , 2002 .

[43]  James C. Newman,et al.  Stress-intensity factors for a wide range of semi-elliptical surface cracks in finite-thickness plates , 1979 .

[44]  L. J. Sluys,et al.  From continuous to discontinuous failure in a gradient-enhanced continuum damage model , 2003 .

[45]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .