Divergent Social Functioning in Behavioral Variant Frontotemporal Dementia and Alzheimer Disease: Reciprocal Networks and Neuronal Evolution

Behavioral variant frontotemporal dementia (bvFTD) disrupts our most human social and emotional functions. Early in the disease, patients show focal anterior cingulate cortex (ACC) and orbital frontoinsula (FI) degeneration, accentuated in the right hemisphere. The ACC and FI, though sometimes considered ancient in phylogeny, feature a large bipolar projection neuron, the von Economo neuron (VEN), which is found only in humans, apes, and selected whales—all large-brained mammals with complex social structures. In contrast to bvFTD, Alzheimer disease (AD) often spares social functioning, and the ACC and FI, until late in its course, damaging instead a posterior hippocampal-cingulo-temporal-parietal network involved in episodic memory retrieval. These divergent patterns of functional and regional impairment remain mysterious despite extensive molecular-level characterization of bvFTD and AD. In this report, we further develop the hypothesis that VENs drive the regional vulnerability pattern seen in bvFTD, citing recent evidence from functional imaging in healthy humans, and also structural imaging and quantitative neuropathology data from bvFTD and AD. Our most recent findings suggest that bvFTD and AD target distinct, anticorrelated intrinsic connectivity networks and that bvFTD-related VEN injury occurs throughout the ACC-FI network. We suggest that the regional and neuronal vulnerability patterns seen in bvFTD and AD underlie the divergent impact of these disorders on recently evolved social-emotional functions.

[1]  H. Critchley Neural mechanisms of autonomic, affective, and cognitive integration , 2005, The Journal of comparative neurology.

[2]  Joel H Kramer,et al.  Patterns of Cognitive and Emotional Empathy in Frontotemporal Lobar Degeneration , 2005, Cognitive and behavioral neurology : official journal of the Society for Behavioral and Cognitive Neurology.

[3]  R. Dolan,et al.  Brain Responses to the Acquired Moral Status of Faces , 2004, Neuron.

[4]  R. Oostenveld,et al.  Frontal theta EEG activity correlates negatively with the default mode network in resting state. , 2008, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[5]  John R. Hodges,et al.  Social reasoning, emotion and empathy in frontotemporal dementia , 2006, Neuropsychologia.

[6]  B L Miller,et al.  Patterns of brain atrophy in frontotemporal dementia and semantic dementia , 2002, Neurology.

[7]  B L Miller,et al.  Emergence of artistic talent in frontotemporal dementia , 1998, Neurology.

[8]  Jane F. Banfield,et al.  Thinking about actions: the neural substrates of person knowledge. , 2004, Cerebral cortex.

[9]  J. Allman,et al.  Intuition and autism: a possible role for Von Economo neurons , 2005, Trends in Cognitive Sciences.

[10]  Kristina M. Visscher,et al.  A Core System for the Implementation of Task Sets , 2006, Neuron.

[11]  D. Yves von Cramon,et al.  Neural networks in frontotemporal dementia—A meta-analysis , 2008, Neurobiology of Aging.

[12]  D. Neary,et al.  Distinct behavioural profiles in frontotemporal dementia and semantic dementia , 2001, Journal of neurology, neurosurgery, and psychiatry.

[13]  C. Economo,et al.  Eine neue art spezialzellen des lobus cinguli und lobus insulae , 1926 .

[14]  M. Bushnell,et al.  Pain affect encoded in human anterior cingulate but not somatosensory cortex. , 1997, Science.

[15]  Sterling C. Johnson,et al.  Neural correlates of self-reflection. , 2002, Brain : a journal of neurology.

[16]  J. Allman,et al.  A neuronal morphologic type unique to humans and great apes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[17]  M. Greicius,et al.  Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI , 2004, Proc. Natl. Acad. Sci. USA.

[18]  Nicholas J. Mulcahy,et al.  Apes Save Tools for Future Use , 2006, Science.

[19]  B. Miller,et al.  Unravelling Boléro: progressive aphasia, transmodal creativity and the right posterior neocortex. , 2008, Brain : a journal of neurology.

[20]  Vinod Menon,et al.  Functional connectivity in the resting brain: A network analysis of the default mode hypothesis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Justin L. Vincent,et al.  Intrinsic functional architecture in the anaesthetized monkey brain , 2007, Nature.

[22]  J. Allman,et al.  Early frontotemporal dementia targets neurons unique to apes and humans , 2006, Annals of neurology.

[23]  Benjamin J. Shannon,et al.  Coherent spontaneous activity identifies a hippocampal-parietal memory network. , 2006, Journal of neurophysiology.

[24]  Justin L. Vincent,et al.  Intrinsic Fluctuations within Cortical Systems Account for Intertrial Variability in Human Behavior , 2007, Neuron.

[25]  H. Critchley,et al.  Neural systems supporting interoceptive awareness , 2004, Nature Neuroscience.

[26]  Matthew D. Lieberman,et al.  Does Rejection Hurt? An fMRI Study of Social Exclusion , 2003, Science.

[27]  H. Braak,et al.  Neuropathological stageing of Alzheimer-related changes , 2004, Acta Neuropathologica.

[28]  J. Morrison,et al.  Spindle neurons of the human anterior cingul. Ate cortex , 1995, The Journal of comparative neurology.

[29]  C Stanger,et al.  Self development and self-conscious emotions. , 1989, Child development.

[30]  G. G. Gallup,et al.  Self‐awareness and the emergence of mind in primates , 1982, American journal of primatology.

[31]  E. Tulving Episodic memory: from mind to brain. , 2002, Annual review of psychology.

[32]  Marina Boccardi,et al.  Frontotemporal dementia as a neural system disease , 2005, Neurobiology of Aging.

[33]  S Antani,et al.  Metacognitive deficits in frontotemporal dementia , 2005, Journal of Neurology, Neurosurgery & Psychiatry.

[34]  A. Brun,et al.  Distribution of cerebral degeneration in Alzheimer's disease , 1976, Archiv für Psychiatrie und Nervenkrankheiten.

[35]  A. Craig How do you feel? Interoception: the sense of the physiological condition of the body , 2002, Nature Reviews Neuroscience.

[36]  A. Nappi,et al.  Alzheimer ' s Disease : Cell-Specific Pathology Isolates the Hippocampal Formation , 2022 .

[37]  M. Mendez,et al.  An Investigation of Moral Judgement in Frontotemporal Dementia , 2005, Cognitive and behavioral neurology : official journal of the Society for Behavioral and Cognitive Neurology.

[38]  Clifford R Jack,et al.  Comparisons Between Alzheimer Disease, Frontotemporal Lobar Degeneration, and Normal Aging With Brain Mapping , 2005, Topics in magnetic resonance imaging : TMRI.

[39]  L A Hansen,et al.  Cognitive profiles differ in autopsy-confirmed frontotemporal dementia and AD , 2002, Neurology.

[40]  S. Thibodeau,et al.  Preclinical evidence of Alzheimer's disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. , 1996, The New England journal of medicine.

[41]  W. Seeley,et al.  Disorders of the self in dementia , 2005 .

[42]  J. Hodges,et al.  Staging disease severity in pathologically confirmed cases of frontotemporal dementia , 2003, Neurology.

[43]  Evelyn C. Ferstl,et al.  The Anterior Frontomedian Cortex and Evaluative Judgment: An fMRI Study , 2002, NeuroImage.

[44]  J. Allman,et al.  Dendritic architecture of the von Economo neurons , 2006, Neuroscience.

[45]  William J Powers,et al.  Activation of human medial prefrontal cortex during autonomic responses to hypoglycemia. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[46]  A. Brun,et al.  Limbic lobe involvement in presenile dementia , 1978, Archiv für Psychiatrie und Nervenkrankheiten.

[47]  J. O'Doherty,et al.  Empathy for Pain Involves the Affective but not Sensory Components of Pain , 2004, Science.

[48]  B. Miller,et al.  Distinct MRI Atrophy Patterns in Autopsy-Proven Alzheimer's Disease and Frontotemporal Lobar Degeneration , 2008, American journal of Alzheimer's disease and other dementias.

[49]  G. Glover,et al.  Reflecting upon Feelings: An fMRI Study of Neural Systems Supporting the Attribution of Emotion to Self and Other , 2004, Journal of Cognitive Neuroscience.

[50]  K. Boone,et al.  Neuroanatomy of the self , 2001, Neurology.

[51]  G L Shulman,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A default mode of brain function , 2001 .

[52]  Jason W. Brown The Lost Self: Pathologies of the Brain and Identity , 2006 .

[53]  G. Shulman,et al.  Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[54]  G. Glover,et al.  Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control , 2007, The Journal of Neuroscience.

[55]  Maurizio Corbetta,et al.  The human brain is intrinsically organized into dynamic, anticorrelated functional networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[56]  K. Yau,et al.  Interoception: the sense of the physiological condition of the body , 2003, Current Opinion in Neurobiology.

[57]  Scott T. Grafton,et al.  Response to Comment on "Wandering Minds: The Default Network and Stimulus-Independent Thought" , 2007, Science.

[58]  J R Hodges,et al.  The prevalence of frontotemporal dementia , 2002, Neurology.

[59]  J. Kril,et al.  Distribution of brain atrophy in behavioral variant frontotemporal dementia , 2005, Journal of the Neurological Sciences.

[60]  B T Hyman,et al.  Neuropathology and apolipoprotein E profile of aged chimpanzees: implications for Alzheimer disease. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[61]  E. Tulving,et al.  Toward a theory of episodic memory: the frontal lobes and autonoetic consciousness. , 1997, Psychological bulletin.

[62]  Benjamin J. Shannon,et al.  Molecular, Structural, and Functional Characterization of Alzheimer's Disease: Evidence for a Relationship between Default Activity, Amyloid, and Memory , 2005, The Journal of Neuroscience.

[63]  Stephen M. Smith,et al.  Investigations into resting-state connectivity using independent component analysis , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[64]  K. Blennow,et al.  Imaging and CSF Studies in the Preclinical Diagnosis of Alzheimer's Disease , 2007, Annals of the New York Academy of Sciences.

[65]  B. Miller,et al.  Self-conscious emotion deficits in frontotemporal lobar degeneration. , 2006, Brain : a journal of neurology.

[66]  P. Fransson Spontaneous low‐frequency BOLD signal fluctuations: An fMRI investigation of the resting‐state default mode of brain function hypothesis , 2005, Human brain mapping.

[67]  Andreas Bartels,et al.  The neural correlates of maternal and romantic love , 2004, NeuroImage.

[68]  Bruno Alfano,et al.  Voxel-based comparison of rCBF SPET images in frontotemporal dementia and Alzheimer's disease highlights the involvement of different cortical networks , 2002, European Journal of Nuclear Medicine and Molecular Imaging.

[69]  J. Hirsch,et al.  A Neural Representation of Categorization Uncertainty in the Human Brain , 2006, Neuron.

[70]  F. Sanides COMPARATIVE ARCHITECTONICS OF THE NEOCORTEX OF MAMMALS AND THEIR EVOLUTIONARY INTERPRETATION * , 1969 .

[71]  H. Critchley,et al.  Neural Activity Relating to Generation and Representation of Galvanic Skin Conductance Responses: A Functional Magnetic Resonance Imaging Study , 2000, The Journal of Neuroscience.

[72]  Alana T. Wong,et al.  Remembering the past and imagining the future: Common and distinct neural substrates during event construction and elaboration , 2007, Neuropsychologia.