Simulation of the Ionic Conductivity, Thermal Conductivity and Thermotransport of Doped Zirconia Using Molecular Dynamics

Abstract This study focuses on a number of transport phenomena in yttria-stabilized zirconia (YSZ). A molecular dynamics simulation based on the Green-Kubo formalism is applied to calculate the lattice thermal conductivity, oxygen diffusion coefficient, ionic conductivity and thermotransport at different concentrations (i.e., 4, 8, 10, 12, 16 and 20 mol% of Y2O3) over a temperature range from 700 K to 1500 K. The results show that the YSZ has a low thermal conductivity in comparison with pure zirconia. The oxygen tracer diffusion coefficient, as calculated from the mean square displacements, and also the ionic conductivity show an activation energy of 0.85eV. The Onsager cross coefficient associated with thermotransport is negative, meaning that the drift of anions in a temperature gradient would be from a cold region to a hot region. All of the simulation results presented show reasonable agreement with available experimental data.

[1]  I. Belova,et al.  Thermodiffusion and ion transport in doped ceria by molecular dynamics simulations , 2021 .

[2]  Leila Momenzadeh,et al.  Ionic and thermal conductivity of pure and doped ceria by molecular dynamics , 2020 .

[3]  Leila Momenzadeh,et al.  Molecular Dynamics Determination of the Lattice Thermal Conductivity of the Cubic Phase of Hafnium Dioxide , 2020 .

[4]  Leila Momenzadeh,et al.  Prediction of the lattice thermal conductivity of zircon and the cubic and monoclinic phases of zirconia by molecular dynamics simulation , 2020, Computational Materials Science.

[5]  K. Hanamura,et al.  Investigation of oxide ion flux at cathode/electrolyte interface in solid oxide fuel cell , 2019, Journal of Power Sources.

[6]  Stephan Kabelac,et al.  Impact of Multi-Causal Transport Mechanisms in an Electrolyte Supported Planar SOFC with (ZrO2)x−1(Y2O3)x Electrolyte , 2018, Entropy.

[7]  M. Zinigrad,et al.  On the dependence of the ionic conductivity on dopant concentration in the cubic zirconium oxide doped with oxides of trivalent metals , 2018 .

[8]  B. Moghtaderi,et al.  The thermal conductivity decomposition of calcite calculated by molecular dynamics simulation , 2018 .

[9]  Lin-wang Wang,et al.  First-principles Green-Kubo method for thermal conductivity calculations , 2017 .

[10]  Stephan Kabelac,et al.  A phenomenological study of yttria-stabilized zirconia at 1300 K with the Green-Kubo formulation and equilibrium molecular dynamics , 2017 .

[11]  M. Salanne,et al.  Ceria co-doping: synergistic or average effect? , 2014, Physical chemistry chemical physics : PCCP.

[12]  P. Madden,et al.  Oxygen Vacancy Ordering and the Conductivity Maximum in Y2O3-Doped CeO2 , 2012 .

[13]  J. Kilner Ionic conductors: feel the strain. , 2008, Nature materials.

[14]  C. Zhang,et al.  Ionic conductivity and its temperature dependence of atmospheric plasma-sprayed yttria stabilized zirconia electrolyte , 2007 .

[15]  M. Mori,et al.  Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents , 2005 .

[16]  A. McGaughey,et al.  Thermal conductivity decomposition and analysis using molecular dynamics simulations Part II. Complex silica structures , 2004 .

[17]  Christos Argirusis,et al.  Oxygen diffusion in yttria stabilised zirconia?experimental results and molecular dynamics calculationsPresented at the 78th International Bunsen Discussion Meeting on , 2003 .

[18]  Stephen J. Skinner,et al.  Oxygen ion conductors , 2003 .

[19]  K. S. Easwarakumar,et al.  Molecular dynamics simulations of oxygen ion diffusion in yttria-stabilized zirconia , 2002 .

[20]  Simon R. Phillpot,et al.  Mechanism of thermal transport in zirconia and yttria-stabilized zirconia by molecular-dynamics simulation. , 2001 .

[21]  N. Padture,et al.  Thermal conductivity of dense and porous yttria-stabilized zirconia , 2001 .

[22]  M. Islam,et al.  Dopant Substitution and Ion Migration in the LaGaO3-Based Oxygen Ion Conductor , 1998 .

[23]  J. Kilner,et al.  The kinetics of oxygen transport in 9.5 mol % single crystal yttria stabilised zirconia , 1997 .

[24]  H. Verweij,et al.  Molecular dynamics simulations of yttria-stabilized zirconia , 1995 .

[25]  C. Chateau,et al.  Ionic conductivity of yttrium-doped zirconia and the “composite effect” , 1995 .

[26]  Xiaoyun Li,et al.  Molecular dynamics simulations of yttrium-stabilized zirconia , 1995 .

[27]  Heyes Pressure tensor of partial-charge and point-dipole lattices with bulk and surface geometries. , 1994, Physical review. B, Condensed matter.

[28]  M. Gillan,et al.  A molecular dynamics study of the thermal conductivity of CaF2 and UO2 , 1991 .

[29]  P. Durán,et al.  Subsolidus Phase Equilibria and Ordering in the System ZrO2‐Y2O3 , 1983 .

[30]  Graeme E. Murch,et al.  The haven ratio in fast ionic conductors , 1982 .

[31]  I. Prigogine,et al.  Sur les propriétés différentielles de la production d'entropie , 1954 .

[32]  L. Onsager Reciprocal Relations in Irreversible Processes. II. , 1931 .