Simulation of the Ionic Conductivity, Thermal Conductivity and Thermotransport of Doped Zirconia Using Molecular Dynamics
暂无分享,去创建一个
[1] I. Belova,et al. Thermodiffusion and ion transport in doped ceria by molecular dynamics simulations , 2021 .
[2] Leila Momenzadeh,et al. Ionic and thermal conductivity of pure and doped ceria by molecular dynamics , 2020 .
[3] Leila Momenzadeh,et al. Molecular Dynamics Determination of the Lattice Thermal Conductivity of the Cubic Phase of Hafnium Dioxide , 2020 .
[4] Leila Momenzadeh,et al. Prediction of the lattice thermal conductivity of zircon and the cubic and monoclinic phases of zirconia by molecular dynamics simulation , 2020, Computational Materials Science.
[5] K. Hanamura,et al. Investigation of oxide ion flux at cathode/electrolyte interface in solid oxide fuel cell , 2019, Journal of Power Sources.
[6] Stephan Kabelac,et al. Impact of Multi-Causal Transport Mechanisms in an Electrolyte Supported Planar SOFC with (ZrO2)x−1(Y2O3)x Electrolyte , 2018, Entropy.
[7] M. Zinigrad,et al. On the dependence of the ionic conductivity on dopant concentration in the cubic zirconium oxide doped with oxides of trivalent metals , 2018 .
[8] B. Moghtaderi,et al. The thermal conductivity decomposition of calcite calculated by molecular dynamics simulation , 2018 .
[9] Lin-wang Wang,et al. First-principles Green-Kubo method for thermal conductivity calculations , 2017 .
[10] Stephan Kabelac,et al. A phenomenological study of yttria-stabilized zirconia at 1300 K with the Green-Kubo formulation and equilibrium molecular dynamics , 2017 .
[11] M. Salanne,et al. Ceria co-doping: synergistic or average effect? , 2014, Physical chemistry chemical physics : PCCP.
[12] P. Madden,et al. Oxygen Vacancy Ordering and the Conductivity Maximum in Y2O3-Doped CeO2 , 2012 .
[13] J. Kilner. Ionic conductors: feel the strain. , 2008, Nature materials.
[14] C. Zhang,et al. Ionic conductivity and its temperature dependence of atmospheric plasma-sprayed yttria stabilized zirconia electrolyte , 2007 .
[15] M. Mori,et al. Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents , 2005 .
[16] A. McGaughey,et al. Thermal conductivity decomposition and analysis using molecular dynamics simulations Part II. Complex silica structures , 2004 .
[17] Christos Argirusis,et al. Oxygen diffusion in yttria stabilised zirconia?experimental results and molecular dynamics calculationsPresented at the 78th International Bunsen Discussion Meeting on , 2003 .
[18] Stephen J. Skinner,et al. Oxygen ion conductors , 2003 .
[19] K. S. Easwarakumar,et al. Molecular dynamics simulations of oxygen ion diffusion in yttria-stabilized zirconia , 2002 .
[20] Simon R. Phillpot,et al. Mechanism of thermal transport in zirconia and yttria-stabilized zirconia by molecular-dynamics simulation. , 2001 .
[21] N. Padture,et al. Thermal conductivity of dense and porous yttria-stabilized zirconia , 2001 .
[22] M. Islam,et al. Dopant Substitution and Ion Migration in the LaGaO3-Based Oxygen Ion Conductor , 1998 .
[23] J. Kilner,et al. The kinetics of oxygen transport in 9.5 mol % single crystal yttria stabilised zirconia , 1997 .
[24] H. Verweij,et al. Molecular dynamics simulations of yttria-stabilized zirconia , 1995 .
[25] C. Chateau,et al. Ionic conductivity of yttrium-doped zirconia and the “composite effect” , 1995 .
[26] Xiaoyun Li,et al. Molecular dynamics simulations of yttrium-stabilized zirconia , 1995 .
[27] Heyes. Pressure tensor of partial-charge and point-dipole lattices with bulk and surface geometries. , 1994, Physical review. B, Condensed matter.
[28] M. Gillan,et al. A molecular dynamics study of the thermal conductivity of CaF2 and UO2 , 1991 .
[29] P. Durán,et al. Subsolidus Phase Equilibria and Ordering in the System ZrO2‐Y2O3 , 1983 .
[30] Graeme E. Murch,et al. The haven ratio in fast ionic conductors , 1982 .
[31] I. Prigogine,et al. Sur les propriétés différentielles de la production d'entropie , 1954 .
[32] L. Onsager. Reciprocal Relations in Irreversible Processes. II. , 1931 .