Demagnetization by basin‐forming impacts on early Mars: Contributions from shock, heat, and excavation

Large hypervelocity impacts occurred frequently on ancient Mars, leaving many large impact basins visible today. After the planetary dynamo ceased operating, such impacts demagnetized the crust by way of (1) excavation of magnetized material, (2) heating, and (3) shock pressure. We investigate these three demagnetizing processes, both separately and in combination, using hydrocode simulations of large impacts on early Mars at a range of impact energies and using a new parameterization of the shock pressure‐demagnetization behavior of candidate Martian minerals. We find that in general, shock pressure demagnetization is more important than thermal demagnetization, except in the combined case of very large impacts (more than ~1026 J) and low Curie temperature minerals such as pyrrhotite. We find that total demagnetized area has a power law dependence on impact energy (with an exponent of 0.6–0.72) and that depending on the magnetic mineral, the demagnetized area resulting for a given impact energy can vary over approximately an order of magnitude. We develop an empirical model that can be used to calculate total demagnetized area for a given impact energy and magnetic mineral (whose pressure‐demagnetization properties are known). Once a reliable basin scaling law for ancient Mars (i.e., relating impact energy to final basin topography) is derived, this mineral parameterization and empirical model will allow robust constraints to be placed upon the primary Martian magnetic carrier(s).

[1]  S. Stewart,et al.  An Impactor Origin for Lunar Magnetic Anomalies , 2012, Science.

[2]  S. Stewart,et al.  Impact demagnetization of the Martian crust: Current knowledge and future directions , 2011 .

[3]  H. Melosh,et al.  Basin-forming impacts: Reconnaissance modeling , 2010 .

[4]  E. A. Lima,et al.  Unraveling the simultaneous shock magnetization and demagnetization of rocks , 2010 .

[5]  F. Poulet,et al.  Magnetic anomalies near Apollinaris Patera and the Medusae Fossae Formation in Lucus Planum, Mars , 2010 .

[6]  H. Frey,et al.  Study of impact demagnetization at Mars using Monte Carlo modeling and multiple altitude data , 2010 .

[7]  P. Rochette,et al.  Demagnetization of terrestrial and extraterrestrial rocks under hydrostatic pressure up to 1.2 GPa , 2010 .

[8]  S. Stewart,et al.  Fault Weakening and Shear Localization During Crater Collapse , 2010 .

[9]  R. Canup,et al.  Modeling Moon-forming Impacts; High-Resolution SPH and CTH Simulations , 2010 .

[10]  M. Kipp,et al.  Giant Impact Theory for Origin of the Moon: High Resolution CTH Simulations , 2010 .

[11]  S. Stewart,et al.  Shock and Static Pressure Demagnetization of Pyrrhotite and Implications for , 2010 .

[12]  Sarah T. Stewart,et al.  Dynamic fault weakening and the formation of large impact craters , 2009 .

[13]  S. Stewart,et al.  Effects of planet curvature and crust on the shock pressure field around impact basins , 2009 .

[14]  D. Dunlop Continuous and stepwise thermal demagnetization: are they equivalent? , 2009 .

[15]  A. Whittington,et al.  Temperature-dependent thermal diffusivity of the Earth’s crust and implications for magmatism , 2009, Nature.

[16]  Erik Asphaug,et al.  Validation of numerical codes for impact and explosion cratering: Impacts on strengthless and metal targets , 2008 .

[17]  M. Manga,et al.  Rapid decrease in Martian crustal magnetization in the Noachian era: Implications for the dynamo and climate of early Mars , 2008 .

[18]  H. Frey Ages of very large impact basins on Mars: Implications for the late heavy bombardment in the inner solar system , 2008 .

[19]  Mario H. Acuna,et al.  An improved crustal magnetic field map of Mars from electron reflectometry: Highland volcano magmatic history and the end of the martian dynamo , 2008 .

[20]  P. Rochette,et al.  Pressure demagnetization of the Martian crust: Ground truth from SNC meteorites , 2007 .

[21]  H. J. Melosh,et al.  A hydrocode equation of state for SiO2 , 2007 .

[22]  S. Stewart,et al.  Modeling impact cratering in layered surfaces , 2007 .

[23]  M. Manga,et al.  Thermal demagnetization of Martian upper crust by magma intrusion , 2007 .

[24]  M. Boustie,et al.  The effects of explosive-driven shocks on the natural remanent magnetization and the magnetic properties of rocks , 2007 .

[25]  J. Arkani‐Hamed,et al.  Viscous and impact demagnetization of Martian crust , 2007 .

[26]  S. Gilder,et al.  Static stress demagnetization of single and multidomain magnetite with implications for meteorite impacts , 2006 .

[27]  H. Frey Impact constraints on, and a chronology for, major events in early Mars history , 2006 .

[28]  D. Dunlop,et al.  Magnetic minerals in the Martian crust , 2005 .

[29]  Pierre Rochette,et al.  Investigating impact demagnetization through laser impacts and SQUID microscopy , 2005 .

[30]  D. Dunlop,et al.  Thermoremanent magnetization of multidomain hematite , 2005 .

[31]  F. Nimmo EARLY CRUSTAL EVOLUTION OF MARS 1 , 2005 .

[32]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[33]  J. Connerney,et al.  Pressure effects on martian crustal magnetization near large impact basins , 2004 .

[34]  S. McEnroe,et al.  Earth analog for Martian magnetic anomalies: remanence properties of hemo-ilmenite norites in the Bjerkreim-Sokndal intrusion, Rogaland, Norway , 2004 .

[35]  J F Bell,et al.  Magnetic Properties Experiments on the Mars Exploration Rover Spirit at Gusev Crater , 2004, Science.

[36]  David E. Smith,et al.  Crustal structure of Mars from gravity and topography , 2004 .

[37]  J. Arkani‐Hamed,et al.  Impact demagnetization of the martian crust , 2004 .

[38]  E. Scott,et al.  A possible source for the Martian crustal magnetic field , 2004 .

[39]  H. Wenk,et al.  Epitaxial relationships of clinopyroxene-hosted magnetite determined using electron backscatter diffraction (EBSD) technique , 2004 .

[40]  M. Saar,et al.  Depth dependence of permeability in the Oregon cascades inferred from hydrogeologic, thermal, seismic, and magmatic modeling constraints , 2004 .

[41]  Michael Bruce Wyatt,et al.  Constraints on the composition and petrogenesis of the Martian crust , 2003 .

[42]  L. Hood,et al.  High pressure magnetic transition in pyrrhotite and impact demagnetization on Mars , 2003 .

[43]  E. Pierazzo,et al.  Distribution of crustal magnetic fields on Mars: Shock effects of basin‐forming impacts , 2003 .

[44]  R. Phillips,et al.  Thermal and crustal evolution of Mars , 2002 .

[45]  David E. Smith,et al.  Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars , 2001 .

[46]  J. Connerney,et al.  Magnetic field of Mars: Summary of results from the aerobraking and mapping orbits , 2001 .

[47]  J. M. Knudsen,et al.  Magnetic Properties Experiments on the Mars Polar Lander , 2001 .

[48]  Erik Asphaug,et al.  Origin of the Moon in a giant impact near the end of the Earth's formation , 2001, Nature.

[49]  V. Sautter,et al.  Pyrrhotite and the remanent magnetization of SNC meteorites: a changing perspective on Martian magnetism , 2001 .

[50]  D. Mitchell,et al.  The global magnetic field of Mars and implications for crustal evolution , 2001 .

[51]  William K. Hartmann,et al.  Cratering Chronology and the Evolution of Mars , 2001 .

[52]  R. Clark,et al.  Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evide , 2000 .

[53]  J. M. Knudsen,et al.  Magnetic enhancement on the surface of Mars , 2000 .

[54]  Ness,et al.  Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment , 1999, Science.

[55]  David J. Dunlop,et al.  Rock Magnetism: Fundamentals and Frontiers , 1997 .

[56]  Elisabetta Pierazzo,et al.  A Reevaluation of Impact Melt Production , 1997 .

[57]  Jianzhong Zhang,et al.  Melting experiments on anhydrous peridotite KLB‐1 from 5.0 to 22.5 GPa , 1994 .

[58]  M. Jackson,et al.  Changes in magnetic remanence during simulated deep sedimentary burial , 1993 .

[59]  G. Kerley Multiphase equation of state for iron , 1993 .

[60]  H. Melosh,et al.  The origin of the moon and the single-impact hypothesis III. , 1991, Icarus.

[61]  M. Dekkers Magnetic properties of natural pyrrhotite. II. High- and low-temperature behaviour of Jrs and TRM as function of grain size , 1989 .

[62]  M. Dekkers Magnetic properties of natural pyrrhotite Part I: Behaviour of initial susceptibility and saturation-magnetization-related rock-magnetic parameters in a grain-size dependent framework , 1988 .

[63]  L. Tauxe,et al.  Acquisition of chemical remanent magnetization by synthetic iron oxide , 1987, Nature.

[64]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[65]  S. Cisowski,et al.  The effect of shock on the magnetism of terrestrial rocks , 1978 .

[66]  J. Arkani‐Hamed,et al.  Low-magnetic crust underlying South Province of Mars , 2012 .

[67]  S. Stewart Impact Basin Formation: The Mantle Excavation Paradox Resolved , 2011 .

[68]  W. Reimold,et al.  Large Meteorite Impacts and Planetary Evolution IV , 2010 .

[69]  James P. Evans The Origin , 2009, Genetics in Medicine.

[70]  Anne M. Hofmeister,et al.  Temperature-dependent thermal diffusivity of the Earth's crust and implications for magmatism , 2009, Nature.

[71]  David E. Smith,et al.  Crustal thickness inversions from recent Mars Reconnaissance Orbiter gravity solutions , 2008 .

[72]  H. Melosh A hydrocode equation of state for SiO , 2008 .

[73]  D. Mitchell,et al.  A global map of Mars' crustal magnetic field based on electron reflectometry , 2007 .

[74]  David J. Dunlop,et al.  Rock Magnetism: Frontmatter , 1997 .

[75]  K. Holsapple THE SCALING OF IMPACT PROCESSES IN PLANETARY SCIENCES , 1993 .

[76]  J. M. McGlaun,et al.  CTH: A three-dimensional shock wave physics code , 1990 .

[77]  H. Melosh Impact Cratering: A Geologic Process , 1986 .

[78]  M. F. Rose,et al.  Magnetic effects of shock and their implications for lunar magnetism. II , 1976 .

[79]  S. Stewart IMPACT BASIN FORMATION AND STRUCTURE FROM 3 D SIMULATIONS , 2022 .