Why momentum width matters for atom interferometry with Bragg pulses

We theoretically consider the effect of the atomic source's momentum width on the efficiency of Bragg mirrors and beamsplitters and, more generally, on the phase sensitivity of Bragg pulse atom interferometers. By numerical optimization, we show that an atomic cloud's momentum width places a fundamental upper bound on the maximum transfer efficiency of a Bragg mirror pulse, and furthermore limits the phase sensitivity of a Bragg pulse atom interferometer. We quantify these momentum width effects, and precisely compute how mirror efficiencies and interferometer phase sensitivities vary as functions of Bragg order and source type. Our results and methodology allow for an efficient optimization of Bragg pulses and the comparison of different atomic sources, and will help in the design of large momentum transfer Bragg mirrors and beamsplitters for use in atom-based inertial sensors.

[1]  S. Chu,et al.  Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer , 1992 .

[2]  R. Lutwak,et al.  Coherent Splitting of Bose-Einstein Condensed Atoms With Optically Induced Bragg Diffraction , 1999 .

[3]  S. Chiow,et al.  Atom interferometers with scalable enclosed area. , 2009, Physical review letters.

[4]  M. Prentiss,et al.  Splitting matter waves using an optimized standing-wave light-pulse sequence , 2005 .

[5]  J. Kutz,et al.  Atomic interactions in precision interferometry using Bose-Einstein condensates , 2011, 1103.1454.

[6]  M. Kasevich,et al.  Large area light-pulse atom interferometry , 2000, Physical review letters.

[7]  F. Pereira dos Santos,et al.  The theory of quantum levitators , 2011, 1103.0639.

[8]  C. Sackett,et al.  High-fidelity manipulation of a bose-einstein condensate using an optical standing wave , 2007 .

[9]  C. Clark,et al.  Prototyping method for Bragg-type atom interferometers , 2011, 1107.2360.

[10]  P. Altin,et al.  Cold-atom gravimetry with a Bose-Einstein condensate , 2010, 1011.5804.

[11]  P. Cladé,et al.  Large momentum beam splitter using Bloch oscillations. , 2009, Physical review letters.

[12]  T. Hänsch,et al.  Superresolution of pulsed multiphoton Raman transitions. , 2001, Physical review letters.

[13]  A. Landragin,et al.  The influence of transverse motion within an atomic gravimeter , 2011 .

[14]  McGowan,et al.  Theoretical and experimental study of the Bragg scattering of atoms from a standing light wave. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[15]  M. Kozuma,et al.  Mach-Zehnder Bragg interferometer for a Bose-Einstein condensate , 1999, cond-mat/9908160.

[16]  Large atom number Bose-Einstein condensate of sodium. , 2006, The Review of scientific instruments.

[17]  N. Robins,et al.  Approaching the Heisenberg limit in an atom laser , 2007, 0704.0291.

[18]  Pierre Meystre,et al.  Atom Optics , 2001 .

[19]  A. Peters,et al.  High-precision gravity measurements using atom interferometry , 1998 .

[20]  S. Chiow,et al.  102ℏk large area atom interferometers. , 2011, Physical review letters.

[21]  David E. Pritchard,et al.  Optics and interferometry with atoms and molecules , 2009 .

[22]  S. Chiow,et al.  Atom-wave diffraction between the Raman-Nath and the Bragg regime: Effective Rabi frequency, losses, and phase shifts , 2007, 0704.2627.

[23]  R. McGowan,et al.  Atom interferometer based on Bragg scattering from standing light waves. , 1995, Physical review letters.

[24]  Steven Chu,et al.  Atom interferometry with up to 24-photon-momentum-transfer beam splitters. , 2007, Physical review letters.

[25]  M. Kasevich,et al.  Spatial observation of Bose-Einstein condensation of 87Rb in a confining potential , 1999 .

[26]  Mean-field treatment of Bragg scattering from a Bose-Einstein condensate , 1999, cond-mat/9912422.