The origin of refractory minerals in comet 81P/Wild 2

[1]  H. Ishii,et al.  A refractory inclusion returned by Stardust from comet 81P/Wild 2 , 2008 .

[2]  C. Mitterer,et al.  N-K electron energy-loss near-edge structures for TiN/VN layers: an ab initio and experimental study , 2008, Analytical and bioanalytical chemistry.

[3]  F. Ciesla,et al.  Redox Conditions in the Solar Nebula: Observational, Experimental, and Theoretical Constraints , 2008 .

[4]  H. Haack,et al.  Life on the Edge - Formation of CAIs and Chondrules at the Inner Edge of the Dust Disk , 2007 .

[5]  Yann Alibert,et al.  Astronomy Astrophysics Letter to the Editor Photophoresis as a source of hot minerals in comets , 2022 .

[6]  F. Robert,et al.  Nitrogen and Carbon Isotopic Composition of the Sun Inferred from a High-Temperature Solar Nebular Condensate , 2007 .

[7]  Ian Wright,et al.  Impact Features on Stardust: Implications for Comet 81P/Wild 2 Dust , 2006, Science.

[8]  Hajime Yano,et al.  Mineralogy and Petrology of Comet 81P/Wild 2 Nucleus Samples , 2006, Science.

[9]  Ian D. Hutcheon,et al.  Isotopic Compositions of Cometary Matter Returned by Stardust , 2006, Science.

[10]  Andrew Steele,et al.  Comet 81P/Wild 2 Under a Microscope , 2006, Science.

[11]  F. Ciesla Dust Coagulation and Settling in Layered Protoplanetary Disks , 2006, astro-ph/0611811.

[12]  G. Matrajt,et al.  Acrylic embedding of Stardust particles encased in aerogel , 2006 .

[13]  S. Simon,et al.  A comparative study of melilite and fassaite in Types B1 and B2 refractory inclusions , 2006 .

[14]  D. Ebel Condensation of Rocky Material in Astrophysical Environments , 2023, 2306.15043.

[15]  J. Papike,et al.  Comparative planetary mineralogy: Valence state partitioning of Cr, Fe, Ti, and V among crystallographic sites in olivine, pyroxene, and spinel from planetary basalts , 2005 .

[16]  K. A. Dyl,et al.  Rapidly Changing Oxygen Fugacity in the Early Solar Nebula Recorded by CAI Rims , 2005 .

[17]  P. Buseck,et al.  Nanometer-scale measurements of Fe3+/ΣFe by electron energy-loss spectroscopy: A cautionary note , 2004 .

[18]  M. Showalter,et al.  Voyager color photometry of Saturn's main rings: a correction , 2003 .

[19]  P. Buseck,et al.  Nanometer-scale measurements of iron oxidation states of cronstedtite from primitive meteorites , 2003 .

[20]  Ray F. Egerton,et al.  Electron Energy-Loss Spectroscopy , 1997, Microscopy and Microanalysis.

[21]  I. Williams,et al.  Theories of planetary formation: constraints from the study of meteorites , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[22]  F. Shu,et al.  The Origin of Chondrules and Refractory Inclusions in Chondritic Meteorites , 2001 .

[23]  K. Keil,et al.  The condensation origin of zoned metal grains in Queen Alexandra Range 94411: Implications for the formation of the Bencubbin‐like chondrites , 2001 .

[24]  D. Gautier,et al.  Turbulent Radial Mixing in the Solar Nebula as the Source of Crystalline Silicates in Comets , 2000 .

[25]  B. Kolbesen,et al.  Formation of Transition Metal Nitrides by Rapid Thermal Processing (RTP) , 2000 .

[26]  M. Enomoto The N-Ti-V system (nitrogen-titanium-vanadium) , 1996 .

[27]  R. Egerton,et al.  Electron Energy-Loss Spectroscopy in the Electron Microscope , 1995, Springer US.

[28]  C. Colliex,et al.  Electron-energy-loss-spectroscopy near-edge fine structures in the iron-oxygen system. , 1991, Physical review. B, Condensed matter.

[29]  M. Prinz,et al.  Petrology of ALH85085: a chondrite with unique characteristics , 1988 .

[30]  R. Brydson,et al.  Electron energy-loss spectroscopy (EELS) and the electronic structure of titanium dioxide , 1987 .

[31]  C. Rao,et al.  L3/L2 white-line intensity ratios in the electron energy-loss spectra of 3d transition-metal oxides , 1984 .

[32]  Richard D. Leapman,et al.  Study of the L 23 edges in the 3 d transition metals and their oxides by electron-energy-loss spectroscopy with comparisons to theory , 1982 .

[33]  G. Rossman,et al.  The Influence of Oxygen Fugacity and Cooling Rate on the Crystallization of Ca-Al Inclusions from Allende , 1982 .