Isotopic composition of CO 2 in the coma of 67P/Churyumov-Gerasimenko measured with ROSINA/DFMS

Measurements of isotopic abundances in cometary ices are key to understanding and reconstructing the history and origin of material in the solar system. Comets are considered the most pristine material in the solar system. Isotopic fractionation (enrichment of an isotope in a molecule compared to the initial abundance) is sensitive to environmental conditions at the time of comet formation. Therefore, measurements of cometary isotope ratios can provide information on the composition, density, temperature, and radiation during formation of the molecules, during the chemical evolution from the presolar cloud to the protosolar nebula, and the protoplanetary disk before accretion in solid bodies. Most isotopic abundances of 12 C/ 13 C and 16 O/ 18 O in comets to date are in agreement with terrestrial abundances. Prior to the Rosetta mission, measurements of 12 C/ 13 C in comets were only available for HCN, CN, and C 2 and for 16 O/ 18 O in H 2 O. Measurements of 12 C/ 13 C in comets were only available from ground based observations and remote sensing, while 16 O/ 18 O in H 2 O had also been measured in-situ. To date, no measurements of the CO 2 isotopologues in comets were available. This paper presents the first measurements of the CO 2 isotopologues in the coma of 67P/Churyumov-Gerasimenko (67P). Methods. We analyzed measurements taken by the Double Focusing Mass Spectrometer (DFMS) of the ROSINA experiment on board the ESA spacecraft Rosetta in the coma of 67P. The CO 2 isotopologues results for 67P are: 12 C/ 13 C = 84 ± 4, 16 O/ 18 O = 494 ± 8, and 13 C 16 O 2 / 12 C 18 O 16 O = 5.87 ± 0.07. The oxygen isotopic ratio is within error bars compatible with terrestrial abundances but not with solar wind measurements. Conclusions. The carbon isotopic ratio and the combined carbon and oxygen isotopic ratio are slightly (14%) enriched in 13 C, within 1σ uncertainty, compared to solar wind abundances and solar abundances. The small fractionation of 12 C/ 13 C in CO 2 is probably compatible with an origin of the material in comets from the native cloud.

[1]  E. Jehin,et al.  Anomalous Nitrogen Isotope Ratio in Comets , 2003, Science.

[2]  C. Keller,et al.  Solar Carbon Monoxide, Thermal Profiling, and the Abundances of C, O, and Their Isotopes , 2006, astro-ph/0606153.

[3]  K. Willacy,et al.  CARBON ISOTOPE FRACTIONATION IN PROTOPLANETARY DISKS , 2008, 0812.0269.

[4]  E. Jehin,et al.  The CN isotopic ratios in comets , 2009, 0907.0311.

[5]  E. Kührt,et al.  Time variability and heterogeneity in the coma of 67P/Churyumov-Gerasimenko , 2015, Science.

[6]  E. Jehin,et al.  12C2/12C13C isotopic ratio in comets C/2001 Q4(NEAT) and C/2002 T7 (LINEAR) , 2011 .

[7]  B. Wopenka,et al.  Interstellar graphite in meteorites: Isotopic compositions and structural properties of single graphite grains from Murchison , 1995 .

[8]  Submillimetre observations of comets with Odin: 2001 - 2005 , 2006, astro-ph/0610779.

[9]  E. Jehin,et al.  The 16OH/18OH and OD/OH isotope ratios in comet C/2002 T7 (LINEAR) , 2008, 0809.4300.

[10]  J. Berthelier,et al.  Evidence for depletion of heavy silicon isotopes at comet 67P/Churyumov-Gerasimenko , 2017, 1705.02896.

[11]  E. Neefs,et al.  67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio , 2015, Science.

[12]  R. Schulz,et al.  Deep Impact: High-Resolution Optical Spectroscopy with the ESO VLT and the Keck I Telescope , 2006 .

[13]  E. Jehin,et al.  The Anomalous 14N/15N Ratio in Comets 122P/1995 S1 (de Vico) and 153P/2002 C1 (Ikeya-Zhang) , 2003 .

[14]  L. Duvet,et al.  Rosina – Rosetta Orbiter Spectrometer for Ion and Neutral Analysis , 2007 .

[15]  D. Murtagh,et al.  Isotopic ratios of H, C, N, O, and S in comets C/2012 F6 (Lemmon) and C/2014 Q2 (Lovejoy) , 2016, 1603.05006.

[16]  E. Jehin,et al.  Isotopic Ratios in Comets: Status and Perspectives , 2009 .

[17]  B. Peterson,et al.  The C-12/C-13 abundance ratio in Comet Halley , 1989 .

[18]  T. Owen,et al.  D2O and HDS in the coma of 67P/Churyumov–Gerasimenko , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[19]  E. Jehin,et al.  Isotopic abundances of carbon and nitrogen in jupiter-family and oort cloud comets , 2005, astro-ph/0508033.

[20]  P. D. P. Taylor,et al.  Isotopic compositions of the elements 1997 (Technical Report) , 1998 .

[21]  R. C. Wiens,et al.  The Oxygen Isotopic Composition of the Sun Inferred from Captured Solar Wind , 2011, Science.

[22]  Miguel de Val-Borro,et al.  Herschel measurements of the D/H and 16O/18O ratios in water in the Oort-cloud comet C/2009 P1 (Garradd) , 2012, 1207.7180.

[23]  J. Berthelier,et al.  Composition-dependent outgassing of comet 67P/Churyumov-Gerasimenko from ROSINA/DFMS - Implications for nucleus heterogeneity? , 2015 .

[24]  J. Berthelier,et al.  Sulphur-bearing species in the coma of comet 67P/Churyumov–Gerasimenko , 2016 .

[25]  B. Peterson,et al.  The carbon isotope abundance ratio in comet Halley , 1995 .

[26]  H. Balsiger,et al.  D/H and 18 O/ 16 O Ratio in the Hydronium Ion and in Neutral Water from in Situ Ion Measurements in Comet Halley , 1995 .

[27]  W. Brand,et al.  Isotopic compositions of the elements 2013 (IUPAC Technical Report) , 2016 .

[28]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[29]  J. Tatum,et al.  Analysis of the Swings Effect and Greenstein Effect in Comet P/Halley , 1991 .

[30]  The Neutron star and black hole initial mass function , 1995, astro-ph/9510136.

[31]  T. Owen,et al.  Measurements of 12C/13C, 14N/15N, and 32S/34S ratios in comet Hale-Bopp (C/1995 O1). , 1997, Science.

[32]  T. Owen,et al.  Molecular nitrogen in comet 67P/Churyumov-Gerasimenko indicates a low formation temperature , 2015, Science.

[33]  The 12C/13C Isotope Gradient Derived from Millimeter Transitions of CN: The Case for Galactic Chemical Evolution , 2005 .

[34]  Martin Rubin,et al.  Inventory of the volatiles on comet 67P/Churyumov-Gerasimenko from Rosetta/ROSINA , 2015 .

[35]  B. Peterson,et al.  Carbon Isotope Abundances in Comets , 2000 .

[36]  J. Prochaska,et al.  Large Excess of Heavy Nitrogen in Both Hydrogen Cyanide and Cyanogen from Comet 17P/Holmes , 2008, 0804.1192.

[37]  J. S. Lewis,et al.  Kinetic inhibition of CO and N2 reduction in the solar nebula , 1980 .

[38]  E. Bergin,et al.  Spectroscopic Observations of Comet C/1996 B2 (Hyakutake) with the Caltech Submillimeter Observatory , 1997 .

[39]  Urs Mall,et al.  Influence of spacecraft outgassing on the exploration of tenuous atmospheres with in situ mass spectrometry , 2010 .

[40]  A. Danks,et al.  High-resolution spectra of C2 Swan bands from comet West 1976 VI , 1983 .

[41]  B. Marty,et al.  Protosolar Carbon Isotopic Composition: Implications for the Origin of Meteoritic Organics , 2004 .

[42]  Giampiero Naletto,et al.  The rotation state of 67P/Churyumov-Gerasimenko from approach observations with the OSIRIS cameras on Rosetta , 2014 .

[43]  J. De Keyser,et al.  Abundant molecular oxygen in the coma of comet 67P/Churyumov–Gerasimenko , 2015, Nature.

[44]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[45]  Hideyo Kawakita,et al.  Cometary Isotopic Measurements , 2015 .

[46]  È. Roueff,et al.  Isotopic fractionation of carbon, deuterium and nitrogen : a full chemical study , 2015, 1501.01141.