Time-dependent, layer-specific modulation of sensory responses mediated by neocortical layer 1.

An essential component of feedback and top-down information in the cortical column arrives at layer 1 (L1) where it contacts distal dendrites of pyramidal neurons. Although much is known about the anatomical organization of L1 fibers, their contribution to sensory information processing remains to be determined. We assessed the physiological significance of L1 inputs by performing extracellular recordings in vivo from neurons in the primary somatosensory cortex of rodents. We found that blocking activity in L1 increases whisker-evoked response magnitude and variance, suggesting that L1 exerts an inhibitory influence on whisker responses. However, when pairing L1 stimulation with whisker deflection, the interval between the stimuli determined the outcome of the interaction, with facilitation of sensory responses dominating the short intervals (</=10 ms) and suppression prevailing at longer intervals (>10 ms). These temporal interactions resulted in a time-dependent regulation of direction tuning of cortical neurons. The synaptic mechanisms underlying L1 inputs' influences were examined using whole cell recordings in vitro while pairing L1 and white-matter stimulations. We found time-dependent, layer-specific differences in synaptic summation of the two inputs, with supralinearity at shorter intervals and sublinearity at longer intervals that resulted mainly from shunting inhibition. Taken together, our results demonstrate that L1 inputs impose a time- and layer-specific regulation on sensory-evoked responses. This in turn may lead to a dynamic transmission of sensory information in the somatosensory cortex.

[1]  A. Reyes,et al.  Influence of dendritic conductances on the input-output properties of neurons. , 2001, Annual review of neuroscience.

[2]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[3]  R. Reid,et al.  Synaptic Integration in Striate Cortical Simple Cells , 1998, The Journal of Neuroscience.

[4]  A. Destexhe,et al.  Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons In vivo. , 1998, Journal of neurophysiology.

[5]  B. Sakmann,et al.  Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[6]  G. Stuart,et al.  Voltage- and Site-Dependent Control of the Somatic Impact of Dendritic IPSPs , 2003, The Journal of Neuroscience.

[7]  L. Cauller Layer I of primary sensory neocortex: where top-down converges upon bottom-up , 1995, Behavioural Brain Research.

[8]  C. Gray,et al.  Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[9]  R. Hall,et al.  Organization of motor and somatosensory neocortex in the albino rat , 1974 .

[10]  Frances S. Chance,et al.  Gain Modulation from Background Synaptic Input , 2002, Neuron.

[11]  D. Tank,et al.  In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons , 1999, Nature Neuroscience.

[12]  J. Chapin,et al.  Mapping the body representation in the SI cortex of anesthetized and awake rats , 1984, The Journal of comparative neurology.

[13]  J. Budd Extrastriate feedback to primary visual cortex in primates: a quantitative analysis of connectivity , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[14]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[15]  T. J. Teyler,et al.  A method for calculating current source density (CSD) analysis without resorting to recording sites outside the sampling volume , 1988, Journal of Neuroscience Methods.

[16]  D. Simons Temporal and spatial integration in the rat SI vibrissa cortex. , 1985, Journal of neurophysiology.

[17]  J. Bullier,et al.  Reaching beyond the classical receptive field of V1 neurons: horizontal or feedback axons? , 2003, Journal of Physiology-Paris.

[18]  J. B. Levitt,et al.  Circuits for Local and Global Signal Integration in Primary Visual Cortex , 2002, The Journal of Neuroscience.

[19]  D. Simons,et al.  Thalamocortical Angular Tuning Domains within Individual Barrels of Rat Somatosensory Cortex , 2003, The Journal of Neuroscience.

[20]  Victor A. F. Lamme,et al.  Feedforward, horizontal, and feedback processing in the visual cortex , 1998, Current Opinion in Neurobiology.

[21]  M. London,et al.  Dendritic computation. , 2005, Annual review of neuroscience.

[22]  G. Buzsáki,et al.  Action potential threshold of hippocampal pyramidal cells in vivo is increased by recent spiking activity , 2001, Neuroscience.

[23]  G. Tamás,et al.  Identified Sources and Targets of Slow Inhibition in the Neocortex , 2003, Science.

[24]  Christof Koch,et al.  Shunting Inhibition Does Not Have a Divisive Effect on Firing Rates , 1997, Neural Computation.

[25]  L. Cauller,et al.  Synaptic physiology of horizontal afferents to layer I in slices of rat SI neocortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  M. Carandini,et al.  Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. , 2000, Journal of neurophysiology.

[27]  B. Sakmann,et al.  Molecular Supralinear Ca 2 Influx into Dendritic Tufts of Layer 2 / 3 Neocortical Pyramidal Neurons In Vitro and In Vivo , 2003 .

[28]  R. Llinás,et al.  Temporal binding via cortical coincidence detection of specific and nonspecific thalamocortical inputs: A voltage-dependent dye-imaging study in mouse brain slices , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[29]  L. Cauller,et al.  The neural basis of the behaviorally relevant N1 component of the somatosensory-evoked potential in SI cortex of awake monkeys: evidence that backward cortical projections signal conscious touch sensation , 2004, Experimental Brain Research.

[30]  B. Vogt The Role of Layer I in Cortical Function , 1991 .

[31]  P A Salin,et al.  Electrophysiological mapping of GABAA receptor-mediated inhibition in adult rat somatosensory cortex. , 1996, Journal of neurophysiology.

[32]  D. Hubel,et al.  Specificity of intrinsic connections in primate primary visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  T. Freund,et al.  Differences between Somatic and Dendritic Inhibition in the Hippocampus , 1996, Neuron.

[34]  E. Niebur,et al.  Growth patterns in the developing brain detected by using continuum mechanical tensor maps , 2022 .

[35]  P. Wahle,et al.  Differential regulation of substance P and somatostatin in martinotti cells of the developing cat visual cortex , 1993, The Journal of comparative neurology.

[36]  O. Prospero-Garcia,et al.  Reliability of Spike Timing in Neocortical Neurons , 1995 .

[37]  C. Nicholson,et al.  Experimental optimization of current source-density technique for anuran cerebellum. , 1975, Journal of neurophysiology.

[38]  Sir G. Archaeopteryx Object-based attention in the primary visual cortex of the macaque monkey , 1998 .

[39]  L. Squire,et al.  The medial temporal lobe memory system , 1991, Science.

[40]  S. Hestrin,et al.  Morphology and Physiology of Cortical Neurons in Layer I , 1996, The Journal of Neuroscience.

[41]  R. R. Sturrock,et al.  Problems of the Keimbahn: New Work on Mammalian Germ Cell Lineage , 1985 .

[42]  W. Senn,et al.  Top-down dendritic input increases the gain of layer 5 pyramidal neurons. , 2004, Cerebral cortex.

[43]  T. Wiesel,et al.  Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  Y. Kubota,et al.  GABAergic cell subtypes and their synaptic connections in rat frontal cortex. , 1997, Cerebral cortex.

[45]  S. Hestrin,et al.  Synaptic Interactions of Late-Spiking Neocortical Neurons in Layer 1 , 2003, The Journal of Neuroscience.

[46]  D. Contreras,et al.  Dynamics of excitation and inhibition underlying stimulus selectivity in rat somatosensory cortex , 2005, Nature Neuroscience.

[47]  Stephen R. Williams,et al.  Mechanisms and consequences of action potential burst firing in rat neocortical pyramidal neurons , 1999, The Journal of physiology.

[48]  H. Swadlow,et al.  The impact of 'bursting' thalamic impulses at a neocortical synapse , 2001, Nature Neuroscience.

[49]  M. Herkenham Laminar organization of thalamic projections to the rat neocortex. , 1980, Science.

[50]  Serge Charpak,et al.  Two types of nicotinic receptors mediate an excitation of neocortical layer I interneurons. , 2002, Journal of neurophysiology.

[51]  J. Lisman Bursts as a unit of neural information: making unreliable synapses reliable , 1997, Trends in Neurosciences.

[52]  U. Mitzdorf Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. , 1985, Physiological reviews.

[53]  H. Swadlow,et al.  Activation of a Cortical Column by a Thalamocortical Impulse , 2002, The Journal of Neuroscience.

[54]  D Mumford,et al.  On the computational architecture of the neocortex. II. The role of cortico-cortical loops. , 1992, Biological cybernetics.

[55]  R. Malach,et al.  Cortical hierarchy reflected in the organization of intrinsic connections in macaque monkey visual cortex , 1993, The Journal of comparative neurology.

[56]  C. Malsburg Binding in models of perception and brain function , 1995, Current Opinion in Neurobiology.

[57]  J. Lund,et al.  Intrinsic laminar lattice connections in primate visual cortex , 1983, The Journal of comparative neurology.

[58]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[59]  M. Diamond,et al.  Neuronal Encoding of Texture in the Whisker Sensory Pathway , 2005, PLoS biology.

[60]  S. Shipp,et al.  The functional logic of cortical connections , 1988, Nature.

[61]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[62]  S. Grossberg How does a brain build a cognitive code , 1980 .

[63]  Wolf Singer,et al.  Neuronal Synchrony: A Versatile Code for the Definition of Relations? , 1999, Neuron.

[64]  F. Zhou,et al.  Morphological properties of intracellularly labeled layer I neurons in rat neocortex , 1996, The Journal of comparative neurology.

[65]  H. Sato,et al.  Temporal Characteristics of Response Integration Evoked by Multiple Whisker Stimulations in the Barrel Cortex of Rats , 1999, The Journal of Neuroscience.

[66]  M. Diamond,et al.  The Role of Spike Timing in the Coding of Stimulus Location in Rat Somatosensory Cortex , 2001, Neuron.

[67]  S. Cajal Cajal on the cerebral cortex , 1988 .

[68]  R. Azouz Dynamic spatiotemporal synaptic integration in cortical neurons: neuronal gain, revisited. , 2005, Journal of neurophysiology.

[69]  C. Gray The Temporal Correlation Hypothesis of Visual Feature Integration Still Alive and Well , 1999, Neuron.

[70]  D. Mumford On the computational architecture of the neocortex , 2004, Biological Cybernetics.

[71]  J. Bullier,et al.  The role of feedback connections in shaping the responses of visual cortical neurons. , 2001, Progress in brain research.

[72]  S Ullman,et al.  Sequence seeking and counter streams: a computational model for bidirectional information flow in the visual cortex. , 1995, Cerebral cortex.

[73]  L. Cauller,et al.  Corticocortical and thalamocortical projections to layer I of the frontal neocortex in rats , 2001, Brain Research.

[74]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[75]  F. Mechler,et al.  Temporal coding of contrast in primary visual cortex: when, what, and why. , 2001, Journal of neurophysiology.

[76]  Y. Amitai,et al.  Inhibitory effect of mouse neocortex layer I on the underlying cellular network , 2003, The European journal of neuroscience.

[77]  M. Larkum,et al.  Signaling of Layer 1 and Whisker-Evoked Ca2+ and Na+ Action Potentials in Distal and Terminal Dendrites of Rat Neocortical Pyramidal Neurons In Vitro and In Vivo , 2002, The Journal of Neuroscience.

[78]  A. Destexhe,et al.  Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. , 1999, Journal of neurophysiology.

[79]  Bert Sakmann,et al.  Supralinear Ca2+ Influx into Dendritic Tufts of Layer 2/3 Neocortical Pyramidal Neurons In Vitro and In Vivo , 2003, The Journal of Neuroscience.

[80]  W. Singer,et al.  Dynamic predictions: Oscillations and synchrony in top–down processing , 2001, Nature Reviews Neuroscience.

[81]  J. M. Hupé,et al.  Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons , 1998, Nature.

[82]  J. Zhu,et al.  Rapid Arrival and Integration of Ascending Sensory Information in Layer 1 Nonpyramidal Neurons and Tuft Dendrites of Layer 5 Pyramidal Neurons of the Neocortex , 2004, The Journal of Neuroscience.

[83]  P Girard,et al.  Feedback connections act on the early part of the responses in monkey visual cortex. , 2001, Journal of neurophysiology.

[84]  D. Simons,et al.  Thalamocortical response transformation in the rat vibrissa/barrel system. , 1989, Journal of neurophysiology.

[85]  D. Contreras,et al.  Nonlinear Integration of Sensory Responses in the Rat Barrel Cortex: An Intracellular Study In Vivo , 2003, The Journal of Neuroscience.