A General Upper Bound on the Size of Constant-Weight Conflict-Avoiding Codes

Conflict-avoiding codes are used in the multiple-access collision channel without feedback. The number of codewords in a conflict-avoiding code is the number of potential users that can be supported in the system. In this paper, a new upper bound on the size of constant-weight conflict-avoiding codes is proved. This upper bound is general in the sense that it is applicable to all code lengths and all Hamming weights. Several existing constructions for conflict-avoiding codes, which are known to be optimal for Hamming weights equal to four and five, are shown to be optimal for all Hamming weights in general.

[1]  Kenneth W. Shum,et al.  A tight asymptotic bound on the size of constant-weight conflict-avoiding codes , 2010, Des. Codes Cryptogr..

[2]  Zhen Zhang,et al.  New constructions of optimal cyclically permutable constant weight codes , 1995, IEEE Trans. Inf. Theory.

[3]  H. N. Shapiro Introduction to the theory of numbers , 1983 .

[4]  J. Rosser,et al.  Approximate formulas for some functions of prime numbers , 1962 .

[5]  Vladimir I. Levenshtein,et al.  Conflict-avoiding codes and cyclic triple systems , 2007, Probl. Inf. Transm..

[6]  Vladimir D. Tonchev,et al.  Optimal conflict-avoiding codes for three active users , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[7]  Chi Wan Sung,et al.  User unsuppressible protocol sequences for collision channel without feedback , 2008, 2008 International Symposium on Information Theory and Its Applications.

[8]  Koji Momihara,et al.  Necessary and sufficient conditions for tight equi-difference conflict-avoiding codes of weight three , 2007, Des. Codes Cryptogr..

[9]  Ryoh Fuji-Hara,et al.  Optical orthogonal codes: Their bounds and new optimal constructions , 2000, IEEE Trans. Inf. Theory.

[10]  Boris Tsybakov,et al.  Some Constructions of Conflict-Avoiding Codes , 2002, Probl. Inf. Transm..

[11]  Hung-Lin Fu,et al.  Optimal conflict-avoiding codes of length n ≡ 0 (mod 16) and weight 3 , 2009, Des. Codes Cryptogr..

[12]  Henry B. Mann,et al.  Addition Theorems: The Addition Theorems of Group Theory and Number Theory , 1976 .

[13]  Michael Rosen,et al.  A classical introduction to modern number theory , 1982, Graduate texts in mathematics.

[14]  Meinard Müller,et al.  Constant Weight Conflict-Avoiding Codes , 2007, SIAM J. Discret. Math..

[15]  Melvyn B. Nathanson,et al.  Additive Number Theory: Inverse Problems and the Geometry of Sumsets , 1996 .

[16]  László Györfi,et al.  Constructions of binary constant-weight cyclic codes and cyclically permutable codes , 1992, IEEE Trans. Inf. Theory.

[17]  László Györfi,et al.  Constructions of protocol sequences for multiple access collision channel without feedback , 1993, IEEE Trans. Inf. Theory.

[18]  Manuel Vogel,et al.  An Introduction to the Theory of Numbers, 6th edition, by G.H. Hardy and E.M. Wright , 2010 .

[19]  Vladimir D. Tonchev,et al.  On Conflict-Avoiding Codes of Length $n=4m$ for Three Active Users , 2007, IEEE Transactions on Information Theory.

[20]  James L. Massey,et al.  The collision channel without feedback , 1985, IEEE Trans. Inf. Theory.

[21]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[22]  M. Kneser,et al.  Abschätzung der asymptotischen Dichte von Summenmengen , 1953 .

[23]  Kenneth W. Shum,et al.  Design and construction of protocol sequences: Shift invariance and user irrepressibility , 2009, 2009 IEEE International Symposium on Information Theory.

[24]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.