World Modeling for Autonomous Systems

This contribution proposes a universal, intelligent information storage and management system for autonomous systems, e. g., robots. The proposed system uses a three pillar information architecture consisting of three distinct components: prior knowledge, environment model, and real world. In the center of the architecture, the environment model is situated, which constitutes the fusion target for prior knowledge and sensory information from the real world. The environment model is object oriented and comprehensively models the relevant world of the autonomous system, acting as an information hub for sensors (information sources) and cognitive processes (information sinks). It features mechanisms for information exchange with the other two components. A main characteristic of the system is that it models uncertainties by probabilities, which are handled by a Bayesian framework including instantiation, deletion and update procedures. The information can be accessed on different abstraction levels, as required. For ensuring validity, consistence, relevance and actuality, information check and handling mechanisms are provided.

[1]  Yaakov Bar-Shalom,et al.  Sonar tracking of multiple targets using joint probabilistic data association , 1983 .

[2]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[3]  Andrey Belkin Information Management in World Modeling , 2010 .

[4]  Daniel P. W. Ellis,et al.  Evaluation of Distance Measures Between Gaussian Mixture Models of MFCCs , 2007, ISMIR.

[5]  Rüdiger Dillmann,et al.  The Collaborative Research Center 588: "Humanoid Robots - Learning and Cooperating Multimodal Robots" , 2004, Int. J. Humanoid Robotics.

[6]  Mica R. Endsley,et al.  Toward a Theory of Situation Awareness in Dynamic Systems , 1995, Hum. Factors.

[7]  Paulo Cesar G. da Costa,et al.  PR-OWL: A Bayesian Ontology Language for the Semantic Web , 2005, ISWC-URSW.

[8]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[9]  Hauke Vagts,et al.  An Architecture for a Task-Oriented Surveillance System: A Service- and Event-Based Approach , 2010, 2010 Fifth International Conference on Systems.

[10]  Günther Görz,et al.  Handbuch der Künstlichen Intelligenz, 4. Auflage , 2003, Handbuch der Künstlichen Intelligenz.

[11]  Waralak V. Siricharoen Ontologies and Object models in Object Oriented Software Engineering , 2006, IMECS.

[12]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[13]  Darko Musicki,et al.  Joint Integrated Probabilistic Data Association - JIPDA , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[14]  Alan N. Steinberg,et al.  Revisions to the JDL data fusion model , 1999, Defense, Security, and Sensing.

[15]  Donald A. Jackson,et al.  Similarity Coefficients: Measures of Co-Occurrence and Association or Simply Measures of Occurrence? , 1989, The American Naturalist.

[16]  Subrata Das High-Level Data Fusion , 2008 .

[17]  Sadahiro Isoda,et al.  Object-oriented real-world modeling revisited , 2001, J. Syst. Softw..

[18]  D J Rogers,et al.  A Computer Program for Classifying Plants. , 1960, Science.

[19]  Z. Papp,et al.  World modeling for cooperative intelligent vehicles , 2008, 2008 IEEE Intelligent Vehicles Symposium.

[20]  Y. Bar-Shalom,et al.  Tracking in a cluttered environment with probabilistic data association , 1975, Autom..

[21]  Jason L. Williams Gaussian Mixture Reduction for Tracking Multiple Maneuvering Targets in Clutter , 2003 .

[22]  Catriona M. Kennedy Anomaly Driven Concept Acquisition , 1998 .

[23]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[24]  Jürgen Beyerer,et al.  Sensoreinsatzplanung und Informationsfusion zur Umgebungsexploration , 2010 .

[25]  Alex Meystel,et al.  Intelligent Systems Annotated Bibliography and Survey, Part I. Systems with Intelligent Controllers , 2001 .

[26]  Uwe D. Hanebeck,et al.  Data association in a world model for autonomous systems , 2010, 2010 IEEE Conference on Multisensor Fusion and Integration.

[27]  Alexander Bauer,et al.  Probabilistic reasoning on object occurrence in complex scenes , 2009, Remote Sensing.

[28]  D. L. Hall,et al.  Mathematical Techniques in Multisensor Data Fusion , 1992 .

[29]  James S. Albus,et al.  Intelligent Systems: Architectures, Design, Control , 2002 .

[30]  Jürgen Beyerer,et al.  7 – Bayesian methods for image fusion , 2008 .

[31]  Morten Lauge Pedersen,et al.  Encyclopedia of Life Support Systems (EOLSS) , 2005 .

[32]  Tom M. Mitchell,et al.  The Need for Biases in Learning Generalizations , 2007 .

[33]  Robin J. Evans,et al.  Integrated probabilistic data association , 1994, IEEE Trans. Autom. Control..

[34]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[35]  Wolfram Burgard,et al.  Probabilistic situation recognition for vehicular traffic scenarios , 2009, 2009 IEEE International Conference on Robotics and Automation.

[36]  Petr Jan Horn,et al.  Autonomic Computing: IBM's Perspective on the State of Information Technology , 2001 .

[37]  Jürgen Beyerer,et al.  Knowledge-Driven Opto-Acoustic Scene Analysis based on an Object- Oriented World Modeling approach for Humanoid Robots , 2010, ISR/ROBOTIK.

[38]  Alexander M. Meystel,et al.  Intelligent Systems: Architecture, Design, and Control , 2000 .

[39]  Il Hong Suh,et al.  Ontology-Based Unified Robot Knowledge for Service Robots in Indoor Environments , 2011, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[40]  Jeffrey O. Kephart,et al.  The Vision of Autonomic Computing , 2003, Computer.

[41]  Waralak V. Siricharoen Merging Ontologies for Object Oriented Software Engineering , 2008, 2008 Fourth International Conference on Networked Computing and Advanced Information Management.

[42]  Y. Bar-Shalom Tracking and data association , 1988 .

[43]  Alexander Bauer,et al.  Object-oriented sensor data fusion for wide maritime surveillance , 2010, 2010 International WaterSide Security Conference.

[44]  A. Bauer,et al.  A conceptual framework for automatic situation assessment , 2011, 2011 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA).

[45]  T. Sørensen,et al.  A method of establishing group of equal amplitude in plant sociobiology based on similarity of species content and its application to analyses of the vegetation on Danish commons , 1948 .

[46]  Jacques R. Oswald Diacritical analysis of systems: a treatise on information theory , 1991 .

[47]  Katia P. Sycara,et al.  A Markov Random Field Model of Context for High-Level Information Fusion , 2006, 2006 9th International Conference on Information Fusion.