Surface decoration with leucine tetrapeptide: An antibacterial strategy against Gram-negative bacteria.

[1]  G. Barton,et al.  Regulation of the nucleic acid-sensing Toll-like receptors , 2021, Nature reviews. Immunology.

[2]  L. Watkins,et al.  Nicotine and its metabolite cotinine target MD2 and inhibit TLR4 signaling , 2021, Innovation.

[3]  D. Kahne,et al.  Assembly and Maintenance of Lipids at the Bacterial Outer Membrane. , 2020, Chemical reviews.

[4]  A. Carvalho,et al.  Surface Triggered Self-Assembly of Fmoc-Tripeptide as an Antibacterial Coating , 2020, Frontiers in Bioengineering and Biotechnology.

[5]  R. Hamers,et al.  Influence of spatial distribution of cationic functional groups at nanoparticle surfaces on bacterial viability and membrane interactions. , 2020, Journal of the American Chemical Society.

[6]  Y. Hu,et al.  Combating Pseudomonas aeruginosa Biofilms by a Chitosan-PEG-Peptide Conjugate via Changes in Assembled Structure. , 2020, ACS applied materials & interfaces.

[7]  K. Fitzgerald,et al.  Toll-like Receptors and the Control of Immunity , 2020, Cell.

[8]  R. Stocker,et al.  The effect of flow on swimming bacteria controls the initial colonization of curved surfaces , 2019, bioRxiv.

[9]  M. Sousa New antibiotics target the outer membrane of bacteria , 2019, Nature.

[10]  K. Nelson,et al.  A new antibiotic selectively kills Gram-negative pathogens , 2019, Nature.

[11]  John A. Robinson,et al.  Chimeric peptidomimetic antibiotics against Gram-negative bacteria , 2019, Nature.

[12]  Yidan Zhang,et al.  Antimicrobial Peptide-Conjugated Hierarchical Antifouling Polymer Brushes for Functionalized Catheter Surfaces. , 2019, Biomacromolecules.

[13]  Yuan Yuan,et al.  Impact of Antifouling PEG Layer on the Performance of Functional Peptides in Regulating Cell Behaviors. , 2019, Journal of the American Chemical Society.

[14]  Yujie Sun,et al.  Dual-Functional Implants with Antibacterial and Osteointegration-Promoting Performances. , 2019, ACS applied materials & interfaces.

[15]  R. Bishop Ratcheting up lipopolysaccharide transport , 2019, Nature.

[16]  Runhui Liu,et al.  Surface Modified with a Host Defense Peptide-Mimicking β-Peptide Polymer Kills Bacteria on Contact with High Efficacy. , 2018, ACS applied materials & interfaces.

[17]  J. Ji,et al.  Bactericidal and Hemocompatible Coating via the Mixed-Charged Copolymer. , 2018, ACS applied materials & interfaces.

[18]  S. Chakradhar Breaking through: How researchers are gaining entry into barricaded bacteria , 2017, Nature Medicine.

[19]  Xuehui Liu,et al.  Antibacterial and detoxifying activity of NZ17074 analogues with multi-layers of selective antimicrobial actions against Escherichia coli and Salmonella enteritidis , 2017, Scientific Reports.

[20]  C. Boev,et al.  Hospital-Acquired Infections: Current Trends and Prevention. , 2017, Critical care nursing clinics of North America.

[21]  S. Polarz,et al.  Sunlight-Triggered Nanoparticle Synergy: Teamwork of Reactive Oxygen Species and Nitric Oxide Released from Mesoporous Organosilica with Advanced Antibacterial Activity. , 2016, Journal of the American Chemical Society.

[22]  C. Whitfield,et al.  Biosynthesis and export of bacterial lipopolysaccharides. , 2014, Annual review of biochemistry.

[23]  R. Lynfield,et al.  Multistate point-prevalence survey of health care-associated infections. , 2014, The New England journal of medicine.

[24]  Hamidreza Ghandehari,et al.  Cationic PAMAM dendrimers aggressively initiate blood clot formation. , 2012, ACS nano.

[25]  R. Brasseur,et al.  The Pseudomonas aeruginosa membranes: a target for a new amphiphilic aminoglycoside derivative? , 2011, Biochimica et biophysica acta.

[26]  M Cristina L Martins,et al.  Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. , 2011, Acta biomaterialia.

[27]  T. Silhavy,et al.  Characterization of the two-protein complex in Escherichia coli responsible for lipopolysaccharide assembly at the outer membrane , 2010, Proceedings of the National Academy of Sciences.

[28]  John A. Robinson,et al.  Peptidomimetic Antibiotics Target Outer-Membrane Biogenesis in Pseudomonas aeruginosa , 2010, Science.

[29]  A. Rinaldi,et al.  Antimicrobial peptides: the LPS connection. , 2010, Methods in molecular biology.

[30]  Hayyoung Lee,et al.  The structural basis of lipopolysaccharide recognition by the TLR4–MD-2 complex , 2009, Nature.

[31]  K. Leung,et al.  The anti-endotoxic effects of the KSL-W decapeptide on Escherichia coli O55:B5 and various oral lipopolysaccharides. , 2008, Journal of periodontal research.

[32]  S. Guelcher,et al.  Biodegradable polyurethanes: synthesis and applications in regenerative medicine. , 2008, Tissue engineering. Part B, Reviews.

[33]  K. Rice,et al.  Molecular Control of Bacterial Death and Lysis , 2008, Microbiology and Molecular Biology Reviews.

[34]  Y. Kuroki,et al.  Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors , 2007, BMC Genomics.

[35]  Mark H Schoenfisch,et al.  Reducing implant-related infections: active release strategies. , 2006, Chemical Society reviews.

[36]  K. Woodhouse,et al.  Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials. , 2005, Biomaterials.

[37]  R. Darouiche,et al.  Treatment of infections associated with surgical implants. , 2004, The New England journal of medicine.

[38]  H. Nikaido Molecular Basis of Bacterial Outer Membrane Permeability Revisited , 2003, Microbiology and Molecular Biology Reviews.

[39]  J. Schierholz,et al.  Implant infections: a haven for opportunistic bacteria. , 2001, The Journal of hospital infection.

[40]  P. Ricciardi-Castagnoli,et al.  Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. , 1998, Science.

[41]  C. P. Sharma,et al.  Use of chitosan as a biomaterial: studies on its safety and hemostatic potential. , 1997, Journal of biomedical materials research.

[42]  H. Engelberg-Kulka,et al.  An Escherichia coli chromosomal "addiction module" regulated by guanosine [corrected] 3',5'-bispyrophosphate: a model for programmed bacterial cell death. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[43]  A. Tomasz,et al.  The Bacterial Cell Surface , 1971, Nature.