Pb1-xSnxSe: a new tunable topological platform with terahertz band gap

In a topological crystalline insulator such as Pb1-xSnxSe, massless Dirac states emerge at an interface with a trivial insulator. We demonstrate the great versatility of Pb1-xSnxSe electronic properties, which makes it a highly promising material to control the massless Dirac states emerging from topological properties. Using magnetooptical transmission spectroscopy on high quality molecular beam epitaxy grown Pb1-xSnxSe, we probe the variation of its bulk energy gap versus chemical composition, temperature, and strain. The determination of its bulk electronic properties will be of critical relevance to design heterostructures. A magneto-optical study on PbSnSe/PbEuSe superlattices will allow us to characterize the topological interface states occurring at each interface, as well as their tunability versus temperature. The engineering of these massless states is shown to be a promising route to achieve photo detection and photoemission in the terahertz range.

[1]  L. A. Vaulchier,et al.  Dirac parameters and topological phase diagram of Pb1−xSnxSe from magnetospectroscopy , 2018, Physical Review B.

[2]  G. Bastard,et al.  Tunable Dirac interface states in topological superlattices , 2018, Physical Review B.

[3]  E. J. Mele,et al.  Weyl and Dirac semimetals in three-dimensional solids , 2017, 1705.01111.

[4]  Timur K. Kim,et al.  A novel artificial condensed matter lattice and a new platform for one-dimensional topological phases , 2017, Science Advances.

[5]  Xiao-Liang Qi,et al.  The Quantum Anomalous Hall Effect: Theory and Experiment , 2016 .

[6]  B. M. Wojek,et al.  Direct observation and temperature control of the surface Dirac gap in a topological crystalline insulator , 2015, Nature Communications.

[7]  Y. Ando,et al.  Topological Crystalline Insulators and Topological Superconductors: From Concepts to Materials , 2015, 1501.00531.

[8]  G. Bauer,et al.  Temperature dependent band offsets in PbSe/PbEuSe quantum well heterostructures , 2012 .

[9]  B. M. Wojek,et al.  Topological crystalline insulator states in Pb(1-x)Sn(x)Se. , 2012, Nature materials.

[10]  Liang Fu,et al.  Topological crystalline insulators. , 2010, Physical review letters.

[11]  Jing Wang,et al.  Topological insulators for high-performance terahertz to infrared applications , 2010, 1101.3583.

[12]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[13]  Shou-Cheng Zhang,et al.  Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells , 2006, Science.

[14]  M. Jaros,et al.  Wave Mechanics Applied to Semiconductor Heterostructures , 1991 .

[15]  G. Bauer Magnetooptical properties of IV–VI compounds , 1980 .

[16]  G. Bauer,et al.  Band-population effects and intraband magneto-optical properties of a many-valley semiconductor: PbTe , 1979 .

[17]  D. Tsui,et al.  Tunneling study of surface quantization in n-PbTe , 1974 .

[18]  S. Senturia,et al.  k→·p→Model for the Magnetic Energy Levels in PbTe andPb1−xSnxTe , 1973 .

[19]  D. L. Mitchell,et al.  Theoretical Energy-Band Parameters for the Lead Salts , 1966 .

[20]  J. Dimmock,et al.  Band Edge Structure of PbS, PbSe, and PbTe , 1964 .