A review of fine structures of nanoporous materials as evidenced by microscopic methods.

This paper reviews diverse capabilities offered by modern electron microscopy techniques in studying fine structures of nanoporous crystals such as zeolites, silica mesoporous crystals, metal organic frameworks and yolk-shell materials. For the case of silica mesoporous crystals, new approaches that have been developed recently to determine the three-dimensionally periodic average structure, e.g., through self-consistent analysis of electron microscope images or through consideration of accidental extinctions, are presented. Various structural deviations in nanoporous materials from their average structures including intergrowth, surface termination, incommensurate modulation, quasicrystal and defects are demonstrated. Ibidem observations of the scanning electron microscope and atomic force microscope give information about the zeolite-crystal-growth mechanism, and an energy for unstitching a building-unit from a crystal surface is directly observed by an anatomic force microscope. It is argued how these observations lead to a deeper understanding of the materials.

[1]  T. Ohsuna,et al.  Fine structures of zeolite-Linde-L (LTL): surface structures, growth unit and defects. , 2004, Chemistry.

[2]  T. Ohsuna,et al.  Insights into the crystal growth mechanisms of zeolites from combined experimental imaging and theoretical studies. , 2007, Faraday discussions.

[3]  W. M. Meier,et al.  The synthesis and structure of SSZ-24, the silica analog of AIPO4-5 , 1991 .

[4]  J. Miao,et al.  Atomic resolution three-dimensional electron diffraction microscopy. , 2002, Physical review letters.

[5]  R. Henderson The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules , 1995, Quarterly Reviews of Biophysics.

[6]  M. Matsen CYLINDER GYROID EPITAXIAL TRANSITIONS IN COMPLEX POLYMERIC LIQUIDS , 1998 .

[7]  David C. Joy,et al.  Principles of Analytical Electron Microscopy , 1986, Springer US.

[8]  Michael O'Keeffe,et al.  Three-periodic nets and tilings: regular and quasiregular nets. , 2003, Acta crystallographica. Section A, Foundations of crystallography.

[9]  L. Francis,et al.  Dispersible Exfoliated Zeolite Nanosheets and Their Application as a Selective Membrane , 2011, Science.

[10]  O. Terasaki,et al.  Unstitching the nanoscopic mystery of zeolite crystal formation. , 2010, Journal of the American Chemical Society.

[11]  Yasuhiro Sakamoto,et al.  Direct imaging of the pores and cages of three-dimensional mesoporous materials , 2000, Nature.

[12]  S. Hovmöller,et al.  Structure of the Polycrystalline Zeolite Catalyst IM-5 Solved by Enhanced Charge Flipping , 2007, Science.

[13]  Osamu Takaoka,et al.  Single pole-piece objective lens with electrostatic bipotential lens for SEM. , 2002, Journal of electron microscopy.

[14]  O. Terasaki,et al.  Dodecagonal tiling in mesoporous silica , 2012, Nature.

[15]  Hideo Todokoro,et al.  Improved CD-SEM optics with retarding and boosting electric fields , 1999, Advanced Lithography.

[16]  B. Vainshtein,et al.  Structure Analysis by Electron Diffraction , 1956 .

[17]  O. Terasaki,et al.  Structural Analyses of Intergrowth and Stacking Fault in Cage-Type Mesoporous Crystals , 2009 .

[18]  T. Ohsuna,et al.  Surface Structure and Crystal Growth of Zeolite Beta C , 2002 .

[19]  J. DeMarco,et al.  X-Ray Determination of the 3 d -Orbital Population in Vanadium Metal , 1965 .

[20]  Delphine Bazer-Bachi,et al.  Catalysis of transesterification by a nonfunctionalized metal-organic framework: acido-basicity at the external surface of ZIF-8 probed by FTIR and ab initio calculations. , 2010, Journal of the American Chemical Society.

[21]  S. D. Smith,et al.  Direct measurement of interfacial curvature distributions in a bicontinuous block copolymer morphology. , 2000, Physical review letters.

[22]  Paul A. Midgley,et al.  Double conical beam-rocking system for measurement of integrated electron diffraction intensities , 1994 .

[23]  O. Terasaki,et al.  The structure of MCM–48 determined by electron crystallography , 1999 .

[24]  Kenji Hiraga,et al.  Framework Determination of a Polytype of Zeolite Beta by Using Electron Crystallography , 2002 .

[25]  M. Vallet‐Regí,et al.  Use of Electron Microscopy and Microdiffraction for Zeolite Framework Comparison , 1997 .

[26]  T. Ohsuna,et al.  Synthesis and characterization of chiral mesoporous silica , 2004, Nature.

[27]  O. Terasaki,et al.  Determination of atomic scattering factors of vanadium and chromium by means of vanishing Kikuchi line method , 1972 .

[28]  T. Ohsuna,et al.  Surface Structure of Zeolite L Studied by High-Resolution Electron Microscopy , 1998 .

[29]  O. Terasaki,et al.  Synthesis and characterization of mesoporous silica AMS-10 with bicontinuous cubic Pn3m symmetry. , 2006, Angewandte Chemie.

[30]  Lu Han,et al.  The role of curvature in silica mesoporous crystals , 2012, Interface Focus.

[31]  F. Schüth,et al.  Au,@ZrO2 yolk-shell catalysts for CO oxidation: Study of particle size effect by ex-post size control of Au cores , 2012 .

[32]  O. Terasaki,et al.  An Appraisal of High Resolution Scanning Electron Microscopy Applied To Porous Materials , 2009 .

[33]  S. Gaskell,et al.  Connectivity Analysis of the Clear Sol Precursor of Silicalite: Are Nanoparticles Aggregated Oligomers or Silica Particles? , 2009 .

[34]  T. Ohsuna,et al.  Investigation of the Surface Structure of the Zeolites FAU and EMT by High‐Resolution Transmission Electron Microscopy , 1993 .

[35]  J. Spence High-Resolution Electron Microscopy , 2003 .

[36]  J. Charvolin,et al.  Fluctuations and phase transformations in a lyotropic liquid crystal , 1988 .

[37]  S. C. Parker,et al.  Atomistic simulation of hydroxide ions in inorganic solids , 1996 .

[38]  T. Ohsuna,et al.  The first zeolite with three-dimensional intersecting straight-channel system of 12-membered rings. , 2001, Journal of the American Chemical Society.

[39]  D. Ruthven,et al.  The nature of surface barriers on nanoporous solids explored by microimaging of transient guest distributions. , 2011, Journal of the American Chemical Society.

[40]  O. Terasaki,et al.  Nanometre resolution using high-resolution scanning electron microscopy corroborated by atomic force microscopy. , 2008, Chemical communications.

[41]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[42]  N. Bats,et al.  External Surface of Zeolite Imidazolate Frameworks Viewed Ab Initio: Multifunctionality at the Organic−Inorganic Interface , 2010 .

[43]  F. Taulelle,et al.  29Si NMR Relaxation of Silicated Nanoparticles in Tetraethoxysilane−Tetrapropylammonium Hydroxide−Water System (TEOS−TPAOH−H2O) , 2009 .

[44]  B. Slater,et al.  In situ atomic force microscopy of zeolite A dissolution. , 2008, Physical chemistry chemical physics : PCCP.

[45]  S. C. Parker,et al.  Atomistic simulation of zeolite surfaces , 2001 .

[46]  C. Catlow,et al.  Adsorption of benzene at the hydroxylated (111) external surface of faujasite , 2000 .

[47]  R. Schmid,et al.  Surface chemistry of metal-organic frameworks at the liquid-solid interface. , 2011, Angewandte Chemie.

[48]  D. Reinelt,et al.  Structure of random monodisperse foam. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  F. Schüth,et al.  Ex-post size control of high-temperature-stable yolk-shell Au, @ZrO(2) catalysts. , 2010, Chemical communications.

[50]  J. Gale,et al.  Simulating the dissolution and growth of zeolite Beta C. , 2005, Angewandte Chemie.

[51]  Richard Blom,et al.  Base‐Induced Formation of Two Magnesium Metal‐Organic Framework Compounds with a Bifunctional Tetratopic Ligand , 2008 .

[52]  O. Terasaki,et al.  Nanoscale Electron Beam Damage Studied by Atomic Force Microscopy , 2009 .

[53]  John C. H. Spence,et al.  On the dose-rate threshold of beam damage in TEM , 2012 .

[54]  C. Catlow,et al.  Understanding nucleation and growth using computer simulation , 2001 .

[55]  Martin P Attfield,et al.  Crystal growth of the nanoporous metal-organic framework HKUST-1 revealed by in situ atomic force microscopy. , 2008, Angewandte Chemie.

[56]  J. Bai,et al.  Spontaneous formation and characterization of silica mesoporous crystal spheres with reverse multiply twinned polyhedral hollows. , 2011, Journal of the American Chemical Society.

[57]  A. Fukuhara,et al.  Determination of the atom form factor by high‐voltage electron diffraction , 1969 .

[58]  Q. Huo,et al.  Mesostructure Design with Gemini Surfactants: Supercage Formation in a Three-Dimensional Hexagonal Array , 1995, Science.

[59]  M. Attfield,et al.  Crystal growth of nanoporous metal organic frameworks. , 2012, Dalton transactions.

[60]  Malcolm G. Thomas,et al.  Radiolysis to knock-on damage transition in zeolites under electron beam irradiation , 2011 .

[61]  Krister Holmberg,et al.  Handbook of applied surface and colloid chemistry , 2002 .

[62]  Fundamental Principles of NMR Crystallography , 2009 .

[63]  O. Terasaki,et al.  A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure , 2003, Nature materials.

[64]  O. Terasaki,et al.  Self-consistent structural solution of mesoporous crystals by combined electron crystallography and curvature assessment. , 2010, Angewandte Chemie.

[65]  S. Radford,et al.  Force mode atomic force microscopy as a tool for protein folding studies , 2003 .

[66]  Michael W Anderson,et al.  Crystallization in Zeolite A Studied by Atomic Force Microscopy , 1998 .

[67]  Michael W Anderson,et al.  Revelation of the molecular assembly of the nanoporous metal organic framework ZIF-8. , 2011, Journal of the American Chemical Society.

[68]  Chuanbo Gao Formation Mechanism of Anionic Surfactant-Templated Mesoporous Silica , 2006 .

[69]  J. Spence,et al.  The kinematic convergent-beam electron diffraction method for nanocrystal structure determination , 2009 .

[70]  U. Kolb,et al.  Towards automated diffraction tomography. Part II--Cell parameter determination. , 2008, Ultramicroscopy.

[71]  Roger Fabian W. Pease,et al.  Generation and applications of finely focused beams of low‐energy electrons , 1981 .

[72]  Erich Plies,et al.  Compound magnetic and electrostatic lenses for low‐voltage applications , 1989 .

[73]  G. Sastre,et al.  Influence of Zeolite Surface in the Sorption of Methane from Molecular Dynamics , 2011 .

[74]  Christian Baerlocher,et al.  Complex zeolite structure solved by combining powder diffraction and electron microscopy , 2006, Nature.

[75]  B. Slater,et al.  Spiral growth on nanoporous silicoaluminophosphate STA-7 as observed by atomic force microscopy , 2009 .

[76]  T. Ohsuna,et al.  Surface structure determination of zeolites , 2004 .

[77]  O. Terasaki,et al.  Anisotropy of Compton profile on vanadium single crystal. , 1973 .

[78]  Michael W Anderson,et al.  Crystal Growth in Zeolite Y Revealed by Atomic Force Microscopy , 1996 .

[79]  F. C. Frank,et al.  Complex alloy structures regarded as sphere packings. II. Analysis and classification of representative structures , 1959 .

[80]  O. Terasaki,et al.  Structural Investigations of AMS-n Mesoporous Materials by Transmission Electron Microscopy , 2004 .

[81]  O. Terasaki,et al.  A lesson from the unusual morphology of silica mesoporous crystals: growth and close packing of spherical micelles with multiple twinning. , 2006, Angewandte Chemie.

[82]  S. Gaskell,et al.  Combined MS and NMR: attractive route to future understanding of the first stages of nucleation of nanoporous materials , 2008 .

[83]  U. Kolb,et al.  Towards automated diffraction tomography: part I--data acquisition. , 2007, Ultramicroscopy.

[84]  J. Newsam,et al.  Structural characterization of zeolite beta , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[85]  J. Charvolin,et al.  Epitaxial relationships during phase transformations in a lyotropic liquid crystal , 1988 .

[86]  S. Tolbert,et al.  Phase Transformations in Mesostructured Silica/Surfactant Composites. Mechanisms for Change and Applications to Materials Synthesis , 2001 .

[87]  Michael W Anderson,et al.  Growth mechanism of microporous zincophosphate sodalite revealed by in situ atomic force microscopy. , 2012, Journal of the American Chemical Society.

[88]  M. Eddaoudi,et al.  Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. , 2005, Journal of the American Chemical Society.

[89]  O. Terasaki,et al.  Structural Solution of Mesocaged Material AMS-8 , 2004 .

[90]  Samuel A. Safran,et al.  Curvature elasticity of thin films , 1999 .

[91]  T. Bein,et al.  Single layer growth of sub-micron metal-organic framework crystals observed by in situ atomic force microscopy. , 2009, Chemical communications.

[92]  O. Terasaki,et al.  Evolution of packing parameters in the structural changes of silica mesoporous crystals: cage-type, 2D cylindrical, bicontinuous diamond and gyroid, and lamellar. , 2011, Journal of the American Chemical Society.

[93]  Michael W. Anderson,et al.  Crystal form, defects and growth of the metal organic framework HKUST-1 revealed by atomic force microscopy , 2008 .

[94]  Michael W. Anderson,et al.  Coaxial Core Shell Overgrowth of Zeolite L - Dependence on Original Crystal Growth Mechanism , 2010 .

[95]  A. Lu,et al.  Yolk-shell gold nanoparticles as model materials for support-effect studies in heterogeneous catalysis: Au, @C and Au, @ZrO2 for CO oxidation as an example. , 2011, Chemistry.

[96]  E. B. Matzke,et al.  The three-dimensional shape of bubbles in foam; an analysis of the role of surface forces in three-dimensional cell shape determination. , 1946, American journal of botany.

[97]  Manuel Moliner,et al.  The ITQ-37 mesoporous chiral zeolite , 2009, Nature.

[98]  I. Müllerová,et al.  Some approaches to low-voltage scanning electron microscopy , 1992 .

[99]  Michael W Anderson,et al.  In situ crystal growth of nanoporous zincophosphate observed by atomic force microscopy. , 2010, Chemical communications.

[100]  T. Kawakatsu Epitaxial Transition from Gyroid to Cylinder in a Diblock Copolymer Melt , 2005, cond-mat/0510032.

[101]  M. Comotti,et al.  High-temperature-stable catalysts by hollow sphere encapsulation. , 2006, Angewandte Chemie.

[102]  L. Azároff X-Ray diffraction , 1974 .

[103]  M. Malac,et al.  Radiation damage in the TEM and SEM. , 2004, Micron.

[104]  Bruce Dunn,et al.  New Porous Crystals of Extended Metal-Catecholates , 2012 .

[105]  J. F. Stoddart,et al.  Large-Pore Apertures in a Series of Metal-Organic Frameworks , 2012, Science.

[106]  O. Terasaki,et al.  Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts , 2009, Nature.

[107]  T. Ohsuna,et al.  Zeolite syntheses using linear diquats of varying length in fluoride media. The synthesis of ITQ-8, ITQ-10, ITQ-14 and high silica Nu-87 , 2002 .

[108]  O. Terasaki,et al.  Accidental extinction in powder XRD intensity of porous crystals : Mesoporous carbon crystal CMK-5 and layered zeolite-nanosheets , 2010 .

[109]  J. Zuo,et al.  Direct observation of d-orbital holes and Cu–Cu bonding in Cu2O , 1999, Nature.

[110]  D. Bradshaw,et al.  Metal-organic framework growth at functional interfaces: thin films and composites for diverse applications. , 2012, Chemical Society reviews.

[111]  P. Turner,et al.  Relativistic Hartree–Fock X‐ray and electron scattering factors , 1968 .

[112]  T. Ohsuna,et al.  Incommensurate modulation in the microporous silica SSZ-24. , 2002, Chemistry.

[113]  Christian Baerlocher,et al.  Ordered silicon vacancies in the framework structure of the zeolite catalyst SSZ-74. , 2008, Nature materials.

[114]  Mark E. Davis,et al.  Electron Diffraction Structure Solution of a Nanocrystalline Zeolite at Atomic Resolution , 1999 .

[115]  K. Tsuda,et al.  Refinement of crystal structural parameters and charge density using convergent-beam electron diffraction – the rhombohedral phase of LaCrO3 , 2002 .