Evolvable Components—From Theory to Hardware Implementations
暂无分享,去创建一个
1 Introduction.- 1.1 Natural Computing.- 1.1.1 Soft Computing.- 1.1.2 Quantum Computing.- 1.1.3 DNA Computing.- 1.1.4 Membrane Computing.- 1.2 Bioinspired Hardware.- 1.3 Motivation for Research.- 2 Reconfigurable Hardware.- 2.1 Digital Cicuits.- 2.2 Digital Circuit Design.- 2.3 Field Programmable Gate arrays.- 2.3.1 Architecture of FPGAs.- 2.3.2 The XC4000 Family.- 2.3.3 ThE Virtex Family.- 2.3.4 The XC6200 Family.- 2.3.5 Atmel FPGAs.- 2.3.6 Features of FPGAs.- 2.4 Hardware Reused as Software.- 2.5 Reconfigurable Computing.- 2.6 Nanotechnology.- 2.7 Cell Matrix.- 2.8 Summary.- 3 Evolutionary Algorithms.- 3.1 Introduction.- 3.2 Variant of Evolutionary Algorithms.- 3.2.1 Genetic Algorithms.- 3.2.2 Genetic Programming.- 3.2.3 Evolutionary Strategies.- 3.2.4 Evolutionary Programming.- 3.3 Some Other Features of Evolutionary Algorithms.- 3.3.1 Parallel Implementations.- 3.3.2 Dynamic Fitness Function.- 3.4 Evolutionary Design and Optimization.- 3.5 The Evolutionary Algorithm Design.- 3.5.1 Missing Theories.- 3.5.2 The Design Strategies.- 3.6 Formal Approach.- 3.7 Summary.- 4 Evolvable Hardware.- 4.1 Basic Concept.- 4.2 Cartesian Genetic Programming.- 4.3 Features of Cartesian Genetic Programming.- 4.3.1 Redundancy and Neutrality.- 4.3.2 Fitness Landscape Analysis.- 4.3.3 Implementation Issues.- 4.4 From Chromosome to Fitness Value.- 4.4.1 Representation.- 4.4.2 Platforms for Circuit Evolution.- 4.4.3 Circuit Evaluation.- 4.5 Fitness Function.- 4.5.1 Fitness Function and Circuit Behavior.- 4.5.2 Evolutionary Circuit Design: Static Fitness Function.- 4.5.3 Evolvable Hardware: Dynamic Fitness Function.- 4.5.4 Discussion.- 4.6 Applications and Degree of Hardware Implementation.- 4.7 Promising Results.- 4.8 Major Current Problems and Potential Solutions.- 4.8.1 Scalability of Representaion.- 4.8.2 SCalability of Fitnes Evaluation.- 4.8.3 Robustness of the Evolved Circuits.- 4.8.4 Applications in Dynamic Environments.- 4.9 Summary.- 5 Towards Evolvable Components.- 5.1 Component Approach to Problem Solving.- 5.2 Evolvable Components.- 5.2.1 System Decomposition.- 5.2.2 Interface.- 5.3 Hardware Implementation.- 5.3.1 Evolvable Componenets.- 5.3.2 Environment.- 5.3.3 Communication Betweem Evolvable Component and Environment.- 5.4 Extension of Evolvable Components.- 5.5 Summary.- 6 Evolvable Computational Machines.- 6.1 Computational Machines and Evolutionary Design.- 6.2 Cellular Automata.- 6.2.1 Basic Model.- 6.2.2 Evolvable Non-Uniform CEllular Automaton.- 6.2.3 An example: Evolvable Non-Uniform Cellular Automaton as a Sequence Generator.- 6.3 General Evolvable Computational Machine.- 6.4 Dynamic Environment.- 6.5 Evolvable Computational System.- 6.5.1 Formal Definition.- 6.5.2 An example: Formal Description of a Simple Image Compression.- 6.6 Properties of Evolvable Machines.- 6.6.1 On the Computation of Evolvable Machines.- 6.6.2 Mappings g and f.- 6.6.3 Changing Fitness Fuction.- 6.7 The Computational Power.- 6.7.1 The Turing Machine and the Church Turing Thesis.- 6.7.2 Beyond the Turing Machines.- 6.7.3 A New Paradigm.- 6.7.4 Site Machine.- 6.7.5 the Power of an Evolvable System.- 6.7.6 Discussion.- 6.8 Summary.- 7 An Evolvable Component for Image Pre-processing.- 7.1 Motivation and Problem Specification.- 7.2 The Image Filter Design.- 7.2.1 Types of Noise Considered for Testing.- 7.2.2 Convnetional Approaches.- 7.2.3 Implementation of FPGAs.- 7.2.4 A Brief Survey of Evolutionary Approaches.- 7.3 Analysis of Reconfigurability and Size of the Search Space.- 7.3.1 Elementary Measures.- 7.3.2 Cartesian Genetic Programming in Hardware.- 7.3.3 Cartesian Genetic Programming at the Fuctional Level.- 7.4 Evolutionary Design: Experimental Framework.- 7.4.1 Reconfigurable Circuit.- 7.4.2 Evolutionary Algorithms.- 7.4.3 Fitness Function.- 7.5 Filters for Smoothing.- 7.5.1 The Results.- 7.5.2 Discussion.- 7.6 Other Image Operators.- 7.6.1 "Salt and Pepper" Noise Filters.- 7.6.2 Random Shot-Noise Filters.- 7.6.3 Edge Detectors.- 7.7 Dynamics Environment.- 7.7.1 Experimental Setup.- 7.7.2 The Results in Tables 7.9 and 7.10.- 7.7.3 Discussion.- 7.8 A Note on a Single Filter Design.- 7.9 Summary.- Virtual Reconfigurable Devices.- 8.1 Chip on Top of a Chip.- 8.2 Architecture of Virtual Reconfigurable Circuits.- 8.2.1 Overview.- 8.2.2 Routing Logic and Configuration Memory.- 8.2.3 Configuration Options.- 8.3 Implementation Costs.- 8.4 Speeding up the Evolutionary Design.- 8.5 Genetic Unit.- 8.6 Physical Realization.- 8.7 Discussion.- 8.8 Summary.- 9 Concluding Statements.- 9.1 The Approach.- 9.2 The Obtained Results.- 9.3 Future Work.- References.