High-speed optical coherence tomography: basics and applications.

In the past decade we have observed a rapid development of ultrahigh-speed optical coherence tomography (OCT) instruments, which currently enable performing cross-sectional in vivo imaging of biological samples with speeds of more than 100,000 A-scans/s. This progress in OCT technology has been achieved by the development of Fourier-domain detection techniques. Introduction of high-speed imaging capabilities lifts the primary limitation of early OCT technology by giving access to in vivo three-dimensional volumetric reconstructions on large scales within reasonable time constraints. As result, novel tools can be created that add new perspective for existing OCT applications and open new fields of research in biomedical imaging. Especially promising is the capability of performing functional imaging, which shows a potential to enable the differentiation of tissue pathologies via metabolic properties or functional responses. In this contribution the fundamental limitations and advantages of time-domain and Fourier-domain interferometric detection methods are discussed. Additionally the progress of high-speed OCT instruments and their impact on imaging applications is reviewed. Finally new perspectives on functional imaging with the use of state-of-the-art high-speed OCT technology are demonstrated.

[1]  B E Bouma,et al.  Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera. , 2006, Optics express.

[2]  J. Nelson,et al.  Measurement of fluid-flow-velocity profile in turbid media by the use of optical Doppler tomography. , 1997, Applied optics.

[3]  Toyohiko Yatagai,et al.  Imaging polarimetry in age-related macular degeneration. , 2008, Investigative ophthalmology & visual science.

[4]  Dirk Faber,et al.  Functional optical coherence tomography : spatially resolved measurements of optical properties , 2005 .

[5]  A. Fercher,et al.  In vivo human retinal imaging by Fourier domain optical coherence tomography. , 2002, Journal of biomedical optics.

[6]  Maciej Wojtkowski,et al.  Spectral Optical Coherence Tomography: A Novel Technique for Cornea Imaging , 2006, Cornea.

[7]  Ruikang K. Wang,et al.  Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo. , 2009, Optics express.

[8]  J. D. de Boer,et al.  Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow. , 2000, Optics letters.

[9]  V Blazek,et al.  Chirp optical coherence tomography of layered scattering media. , 1998, Journal of biomedical optics.

[10]  Y. Yasuno,et al.  Full-range, high-speed, high-resolution 1 microm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye. , 2008, Optics express.

[11]  Anna Szkulmowska,et al.  Flow velocity estimation by complex ambiguity free joint Spectral and Time domain Optical Coherence Tomography. , 2009, Optics express.

[12]  S. Boppart,et al.  Functional optical coherence tomography for detecting neural activity through scattering changes. , 2003, Optics letters.

[13]  E A Swanson,et al.  Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. , 1994, Archives of ophthalmology.

[14]  Joel Pokorny,et al.  Visual stimulus-induced changes in human near-infrared fundus reflectance. , 2006, Investigative ophthalmology & visual science.

[15]  Zhongping Chen,et al.  Swept laser source at 1μm for Fourier domain optical coherence tomography , 2006 .

[16]  T. Yatagai,et al.  Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography. , 2006, Applied optics.

[17]  S. Yun,et al.  High-speed optical frequency-domain imaging. , 2003, Optics express.

[18]  K. Ohbayashi,et al.  Fourier domain optical coherence tomography using optical demultiplexers imaging at 60,000,000 lines/s. , 2008, Optics letters.

[19]  Teresa C. Chen,et al.  In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. , 2004, Optics letters.

[20]  Maciej Wojtkowski,et al.  In vivo corneal high-speed, ultra high-resolution optical coherence tomography. , 2007, Archives of ophthalmology.

[21]  M. Tanifuji,et al.  Evaluating neural activity of retinal ganglion cells by flash-evoked intrinsic signal imaging in macaque retina. , 2008, Investigative ophthalmology & visual science.

[22]  Dug Young Kim,et al.  Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source. , 2006, Optics express.

[23]  S H Yun,et al.  Motion artifacts in optical coherence tomography with frequency-domain ranging. , 2004, Optics express.

[24]  Maciej Wojtkowski,et al.  Fourier domain optical coherence tomography using optical frequency comb , 2007, SPIE BiOS.

[25]  A. Fercher,et al.  Full range complex spectral optical coherence tomography technique in eye imaging. , 2002, Optics letters.

[26]  M J Everett,et al.  Evaluation of optical coherence quantitation of analytes in turbid media by use of two wavelengths. , 1999, Applied optics.

[27]  Benjamin J Vakoc,et al.  Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video). , 2007, Gastrointestinal endoscopy.

[28]  M. Wojtkowski,et al.  Improved spectral optical coherence tomography using optical frequency comb. , 2008, Optics express.

[29]  A. Fercher,et al.  Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm. , 2003, Optics express.

[30]  J. Duker,et al.  Optical coherence tomography of age-related macular degeneration and choroidal neovascularization. , 1996, Ophthalmology.

[31]  Freddy T. Nguyen,et al.  Optical coherence tomography: a review of clinical development from bench to bedside. , 2007, Journal of biomedical optics.

[32]  Teresa C. Chen,et al.  In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography , 2003 .

[33]  M. V. van Gemert,et al.  Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. , 1997, Optics letters.

[34]  Jay Jeffries,et al.  Wavelength-agile diode-laser sensing strategies for monitoring gas properties in optically harsh flows: application in cesium-seeded pulse detonation. , 2002, Optics express.

[35]  Ruikang K. Wang,et al.  In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography. , 2008, Optics express.

[36]  J. Fujimoto,et al.  Three-dimensional endomicroscopy using optical coherence tomography , 2007 .

[37]  M. Wojtkowski,et al.  Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range. , 2009, Optics express.

[38]  J. Schuman,et al.  Optical coherence tomography. , 2000, Science.

[39]  J. Fujimoto,et al.  Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography. , 2006, Optics express.

[40]  W Drexler,et al.  Precision of extracting absorption profiles from weakly scattering media with spectroscopic time-domain optical coherence tomography. , 2004, Optics express.

[41]  J. Fujimoto,et al.  In vivo retinal imaging by optical coherence tomography. , 1993, Optics letters.

[42]  C. Boccara,et al.  Ultrahigh-resolution full-field optical coherence tomography. , 2004, Applied optics.

[43]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[44]  R. Navarro,et al.  Optics of the average normal cornea from general and canonical representations of its surface topography. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[45]  R. Salathé,et al.  Rapid and scalable scans at 21 m/s in optical low-coherence reflectometry. , 1997, Optics letters.

[46]  David A. Jackson,et al.  Three dimensional OCT images from retina and skin. , 2000, Optics express.

[47]  Maciej Wojtkowski,et al.  Ophthalmic imaging by spectral optical coherence tomography. , 2004, American journal of ophthalmology.

[48]  J G Fujimoto,et al.  In vivo functional imaging of intrinsic scattering changes in the human retina with high-speed ultrahigh resolution OCT. , 2009, Optics express.

[49]  Richard B Rosen,et al.  Simultaneous optical coherence tomography--Indocyanine Green dye fluorescence imaging system for investigations of the eye's fundus. , 2005, Optics letters.

[50]  Benjamin J Vakoc,et al.  Fourier-domain optical coherence tomography: recent advances toward clinical utility. , 2009, Current opinion in biotechnology.

[51]  M. Wojtkowski,et al.  Real-time in vivo imaging by high-speed spectral optical coherence tomography. , 2003, Optics letters.

[52]  Benjamin J Vakoc,et al.  Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging , 2009, Nature Medicine.

[53]  Teresa C. Chen,et al.  Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. , 2004, Optics express.

[54]  Shuichi Makita,et al.  Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography. , 2008, Optics letters.

[55]  Maciej Wojtkowski,et al.  Spectral Optical Coherence Tomography in Video-Rate and 3D Imaging of Contact Lens Wear , 2007, Optometry and vision science : official publication of the American Academy of Optometry.

[56]  Marinko V Sarunic,et al.  Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography. , 2008, Archives of ophthalmology.

[57]  Amiram Grinvald,et al.  Special report: Noninvasive multi-parameter functional optical imaging of the eye. , 2005, Ophthalmic surgery, lasers & imaging : the official journal of the International Society for Imaging in the Eye.

[58]  Joseph A Izatt,et al.  Velocity-resolved 3D retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography. , 2009, Optics express.

[59]  Maciej Wojtkowski,et al.  Fuchs' endothelial dystrophy in 830-nm spectral domain optical coherence tomography. , 2009, Ophthalmic surgery, lasers & imaging : the official journal of the International Society for Imaging in the Eye.

[60]  Iwona Gorczynska,et al.  Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera. , 2009, Optics express.

[61]  M. Wojtkowski,et al.  Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography. , 2008, Optics express.

[62]  E Reichel,et al.  Projection OCT fundus imaging for visualising outer retinal pathology in non-exudative age-related macular degeneration , 2008, British Journal of Ophthalmology.

[63]  Christian Ahlers,et al.  Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography. , 2010, Investigative ophthalmology & visual science.

[64]  Lucian Plesea,et al.  Direct corneal elevation measurements using multiple delay en face optical coherence tomography. , 2008, Journal of biomedical optics.

[65]  A. Fercher,et al.  Measurement of intraocular distances by backscattering spectral interferometry , 1995 .

[66]  Christian Ahlers,et al.  Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina. , 2009, Optics express.

[67]  U. Schmidt-Erfurth,et al.  Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography. , 2008, Optics express.

[68]  Tejal A Desai,et al.  Optical coherence tomography of cell dynamics in three-dimensional tissue models. , 2006, Optics express.

[69]  S. Yun,et al.  Ultrahigh-speed optical frequency domain imaging and application to laser ablation monitoring , 2006 .

[70]  Bernd Hamann,et al.  Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets. , 2007, Journal of biomedical optics.

[71]  Y. Yasuno,et al.  Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-source optical coherence tomography with 1-microm probe. , 2009, Optics express.

[72]  M. Wojtkowski,et al.  Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography. , 2009, Optics express.

[73]  Alex Cable,et al.  Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography. , 2008, Journal of biomedical optics.

[74]  J. Fujimoto,et al.  Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. , 2006, Optics letters.

[75]  J. Fujimoto,et al.  Spectroscopic optical coherence tomography. , 2000 .

[76]  J. Duker,et al.  Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. , 2005, Ophthalmology.

[77]  Joseph A Izatt,et al.  High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation. , 2007, Optics letters.

[78]  James G Fujimoto,et al.  Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm. , 2005, Optics express.

[79]  R. Frostig,et al.  Optical imaging of neuronal activity. , 1988, Physiological reviews.

[80]  W Drexler,et al.  Ultrahigh resolution Fourier domain optical coherence tomography. , 2004, Optics express.

[81]  J. Schmitt,et al.  Differential absorption imaging with optical coherence tomography , 1998 .

[82]  Marinko V Sarunic,et al.  Spectral domain second harmonic optical coherence tomography , 2005, SPIE BiOS.

[83]  Boris Hermann,et al.  Wide-field optical coherence tomography of the choroid in vivo. , 2008, Investigative ophthalmology & visual science.

[84]  H. Kadono,et al.  Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo , 2003, Journal of Neuroscience Methods.

[85]  Maciej Wojtkowski,et al.  Retinal assessment using optical coherence tomography , 2006, Progress in Retinal and Eye Research.

[86]  J. Izatt,et al.  Optimal interferometer designs for optical coherence tomography. , 1999, Optics letters.

[87]  Ton G van Leeuwen,et al.  Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography. , 2003, Optics letters.

[88]  Ruikang K. Wang,et al.  Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds. , 2009, Journal of biomedical optics.

[89]  Stefan Kray,et al.  High resolution simultaneous dual-band spectral domain optical coherence tomography , 2009, European Conference on Biomedical Optics.

[90]  J. Fujimoto,et al.  Optical coherence tomography using a frequency-tunable optical source. , 1997, Optics letters.

[91]  M. Akiba,et al.  Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD cameras. , 2003, Optics letters.

[92]  A. Fercher,et al.  Performance of fourier domain vs. time domain optical coherence tomography. , 2003, Optics express.

[93]  Joseph A. Izatt,et al.  Spectral domain phase microscopy , 2004 .

[94]  Qin Huang,et al.  Three-dimensional endomicroscopy of the human colon using optical coherence tomography. , 2009, Optics express.

[95]  Joseph A Izatt,et al.  Molecular imaging of endogenous and exogenous chromophores using ground state recovery pump-probe optical coherence tomography. , 2006, Optics express.

[96]  J. Izatt,et al.  Velocity-estimation accuracy and frame-rate limitations in color Doppler optical coherence tomography. , 1998, Optics letters.

[97]  J. Duker,et al.  Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. , 2004, Optics express.

[98]  Marinko Sarunic,et al.  Full-field swept-source phase microscopy , 2006, SPIE BiOS.

[99]  R. Huber,et al.  Dispersion, coherence and noise of Fourier domain mode locked lasers. , 2009, Optics express.

[100]  J. Fujimoto,et al.  High-speed phase- and group-delay scanning with a grating-based phase control delay line. , 1997, Optics letters.

[101]  Manabu Tanifuji,et al.  Intrinsic signal imaging in macaque retina reveals different types of flash-induced light reflectance changes of different origins. , 2007, Investigative ophthalmology & visual science.

[102]  J. Fujimoto,et al.  Optical coherence tomography: A new tool for glaucoma diagnosis , 1995, Current opinion in ophthalmology.

[103]  Kirill V Larin,et al.  Live imaging of rat embryos with Doppler swept-source optical coherence tomography. , 2009, Journal of biomedical optics.

[104]  Qienyuan Zhou,et al.  Three-dimensional imaging of the human retina by high-speed optical coherence tomography. , 2003, Optics express.

[105]  J. Fujimoto,et al.  Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser. , 1997, Optics letters.

[106]  Linear optical coherence tomography system with a downconverted fringe pattern. , 2004, Optics letters.

[107]  R. Leitgeb,et al.  Resonant Doppler flow imaging and optical vivisection of retinal blood vessels. , 2007, Optics express.

[108]  A. Weiner,et al.  Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator. , 1990, Optics letters.

[109]  B E Bouma,et al.  Rapid acquisition of in vivo biological images by use of optical coherence tomography. , 1996, Optics letters.

[110]  Toyohiko Yatagai,et al.  Three-dimensional Anterior Segment Optical Coherence Tomography of Filtering Blebs After Trabeculectomy , 2008, Journal of glaucoma.

[111]  Iwona Gorczynska,et al.  Comparison of reflectivity maps and outer retinal topography in retinal disease by 3-D Fourier domain optical coherence tomography. , 2009, Optics express.

[112]  W. Marsden I and J , 2012 .

[113]  A. Fercher,et al.  Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye. , 2005, Optics express.

[114]  Justin Pedro,et al.  Simultaneous OCT/SLO/ICG imaging. , 2009, Investigative ophthalmology & visual science.

[115]  R. Huber,et al.  K-space linear Fourier domain mode locked laser and applications for optical coherence tomography. , 2008, Optics express.

[116]  W. Suzuki,et al.  Origins of retinal intrinsic signals: A series of experiments on retinas of macaque monkeys , 2009, Japanese Journal of Ophthalmology.

[117]  Donald T. Miller,et al.  In vivo functional imaging of human cone photoreceptors. , 2007, Optics express.

[118]  David A. Jackson,et al.  En-face coherence imaging using galvanometer scanner modulation. , 1998, Optics letters.

[119]  Barry Cense,et al.  Real-time multi-functional optical coherence tomography. , 2003, Optics express.

[120]  P. Targowski,et al.  Optical coherence tomography in art diagnostics and restoration , 2008 .

[121]  Zhongping Chen,et al.  Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. , 2000, Optics letters.

[122]  Michael W. Jenkins,et al.  Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser. , 2007, Optics express.

[123]  Adrian Mariampillai,et al.  Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system. , 2007, Optics express.

[124]  Maciej Wojtkowski,et al.  High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography. , 2006, Ophthalmology.

[125]  S. Yun,et al.  115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser. , 2005, Optics letters.

[126]  J. Izatt,et al.  High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography. , 1997, Optics express.

[127]  M. Tanifuji,et al.  Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex , 2002 .

[128]  J. Fujimoto,et al.  Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second. , 2007, Optics letters.

[129]  J. Duker,et al.  In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography. , 2006, Optics letters.

[130]  J P Heritage,et al.  400-Hz mechanical scanning optical delay line. , 1993, Optics letters.

[131]  B. Bouma,et al.  Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. , 2003, Optics letters.

[132]  Ivan V. Tomov,et al.  High-resolution second-harmonic optical coherence tomography of collagen in rat-tail tendon , 2005 .

[133]  Risto Myllylä,et al.  Automated segmentation of the macula by optical coherence tomography. , 2009, Optics express.

[134]  S. Boppart,et al.  Optical micro-scale mapping of dynamic biomechanical tissue properties. , 2008, Optics express.

[135]  J. Izatt,et al.  Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source. , 2005, Journal of biomedical optics.

[136]  Christoph Kolbitsch,et al.  Ultra-high-speed volumetric tomography of human retinal blood flow. , 2009, Optics express.

[137]  Wolfgang Wieser,et al.  Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation. , 2008, Optics letters.

[138]  S. Yun,et al.  High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter. , 2003, Optics letters.

[139]  Y. Yasuno,et al.  Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation. , 2008, Optics express.

[140]  M. Wojtkowski,et al.  Correlation of spectral optical coherence tomography with fluorescein and indocyanine green angiography in multiple evanescent white dot syndrome , 2008, British Journal of Ophthalmology.

[141]  A. Roorda,et al.  Intrinsic signals from human cone photoreceptors. , 2008, Investigative ophthalmology & visual science.

[142]  A. Villringer,et al.  Non-invasive optical spectroscopy and imaging of human brain function , 1997, Trends in Neurosciences.

[143]  T. Yatagai,et al.  Optical coherence angiography. , 2006, Optics express.

[144]  Boris Hermann,et al.  Techniques for extraction of depth-resolved in vivo human retinal intrinsic optical signals with optical coherence tomography , 2009, Japanese Journal of Ophthalmology.

[145]  J. Fujimoto,et al.  Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles. , 2005, Optics express.

[146]  Eric A. Swanson,et al.  Optical Coherence Tomography of Macular Holes , 1996 .

[147]  Shuliang Jiao,et al.  Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography. , 2005, Optics express.

[148]  J. Fujimoto,et al.  Optical biopsy and imaging using optical coherence tomography , 1995, Nature Medicine.

[149]  M. Dickinson,et al.  Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT. , 2009, Optics letters.

[150]  Christoph K. Hitzenberger,et al.  Polarisation-sensitive optical coherence tomography for material characterisation and strain-field mapping , 2003 .

[151]  G. Ha Usler,et al.  "Coherence radar" and "spectral radar"-new tools for dermatological diagnosis. , 1998, Journal of biomedical optics.

[152]  A. Podoleanu Unbalanced versus balanced operation in an optical coherence tomography system. , 2000, Applied optics.

[153]  Maciej Wojtkowski,et al.  Analysis of the outer retina reconstructed by high-resolution, three-dimensional spectral domain optical coherence tomography. , 2009, Ophthalmic surgery, lasers & imaging : the official journal of the International Society for Imaging in the Eye.

[154]  Bogumiła J. Rouba,et al.  The Application of Optical Coherence Tomography to Non-Destructive Examination of Museum Objects , 2004 .

[155]  J. Fujimoto,et al.  Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second. , 2008, Optics express.

[156]  A. Fercher,et al.  Optical coherence tomography - principles and applications , 2003 .

[157]  A. Fercher,et al.  Wavelength-tuning interferometry of intraocular distances. , 1997, Applied optics.

[158]  S. Yun,et al.  In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. , 2004, Optics express.

[159]  Benjamin J Vakoc,et al.  Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging. , 2008, JACC. Cardiovascular imaging.

[160]  J. Taylor,et al.  Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[161]  R. Zawadzki,et al.  Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. , 2003, Optics express.

[162]  A Rollins,et al.  In vivo video rate optical coherence tomography. , 1998, Optics express.

[163]  Kate Grieve,et al.  Ultrahigh resolution ex vivo ocular imaging using ultrashort acquisition time en face optical coherence tomography , 2005 .

[164]  James G. Fujimoto,et al.  Optical Coherence Tomography of Ocular Diseases , 1995 .

[165]  J. Izatt,et al.  In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. , 1997, Optics letters.

[166]  Amy L Oldenburg,et al.  Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography. , 2006, Optics express.

[167]  C. Boccara,et al.  Spectroscopic ultrahigh-resolution full-field optical coherence microscopy. , 2008, Optics express.

[168]  Arthur C K Cheng,et al.  Central corneal thickness measurements by ultrasound, Orbscan II, and Visante OCT after LASIK for myopia. , 2008, Journal of refractive surgery.

[169]  Manabu Tanifuji,et al.  Mapping cone- and rod-induced retinal responsiveness in macaque retina by optical imaging. , 2004, Investigative ophthalmology & visual science.

[170]  H. Rylander Iii,et al.  Detection of neural activity using phase-sensitive optical low-coherence reflectometry. , 2004, Optics express.

[171]  C K Hitzenberger,et al.  Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography. , 2000, Optics letters.

[172]  M. Jenkins,et al.  In vivo gated 4D imaging of the embryonic heart using optical coherence tomography. , 2007, Journal of biomedical optics.

[173]  H. Seung,et al.  Noncontact measurement of nerve displacement during action potential with a dual-beam low-coherence interferometer. , 2004, Optics letters.

[174]  D. K. Hill,et al.  The volume change resulting from stimulation of a giant nerve fibre , 1950, The Journal of physiology.

[175]  M. Wojtkowski,et al.  Phase-resolved Doppler optical coherence tomography--limitations and improvements. , 2008, Optics letters.

[176]  Maciej Wojtkowski,et al.  Coherent noise-free ophthalmic imaging by spectral optical coherence tomography , 2005 .

[177]  J. Fujimoto,et al.  In vivo endoscopic optical biopsy with optical coherence tomography. , 1997, Science.

[178]  OPTICS IN MEDICINE, BIOLOGY AND ENVIRONMENTAL RESEARCH , 1993 .

[179]  W. Drexler,et al.  In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid. , 2005, Optics express.

[180]  Taner Akkin,et al.  Depth-resolved measurement of transient structural changes during action potential propagation. , 2007, Biophysical journal.

[181]  E A Swanson,et al.  Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. , 1995, Archives of ophthalmology.

[182]  J. Fujimoto,et al.  Swept source optical coherence microscopy using a Fourier domain mode-locked laser. , 2007, Optics express.