Convexity Properties Associated with Nonconvex Quadratic Matrix Functions and Applications to Quadratic Programming

We establish several convexity results which are concerned with nonconvex quadratic matrix (QM) functions: strong duality of quadratic matrix programming problems, convexity of the image of mappings comprised of several QM functions and existence of a corresponding S-lemma. As a consequence of our results, we prove that a class of quadratic problems involving several functions with similar matrix terms has a zero duality gap. We present applications to robust optimization, to solution of linear systems immune to implementation errors and to the problem of computing the Chebyshev center of an intersection of balls.

[1]  Yonina C. Eldar,et al.  Strong Duality in Nonconvex Quadratic Optimization with Two Quadratic Constraints , 2006, SIAM J. Optim..

[2]  Jorge J. Moré,et al.  Computing a Trust Region Step , 1983 .

[3]  J.-B. Hiriart-Urruty,et al.  Permanently Going Back and Forth between the ``Quadratic World'' and the ``Convexity World'' in Optimization , 2002 .

[4]  H. Woxniakowski Information-Based Complexity , 1988 .

[5]  Sabine Van Huffel,et al.  Total least squares problem - computational aspects and analysis , 1991, Frontiers in applied mathematics.

[6]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[7]  Jie Sun,et al.  Solution Methodologies for the Smallest Enclosing Circle Problem , 2003, Comput. Optim. Appl..

[8]  Aharon Ben-Tal,et al.  Lectures on modern convex optimization , 1987 .

[9]  Henry Wolkowicz,et al.  Handbook of Semidefinite Programming , 2000 .

[10]  Boris Polyak Convexity of Quadratic Transformations and Its Use in Control and Optimization , 1998 .

[11]  Marc Teboulle,et al.  Hidden convexity in some nonconvex quadratically constrained quadratic programming , 1996, Math. Program..

[12]  L. Brickman ON THE FIELD OF VALUES OF A MATRIX , 1961 .

[13]  Bernard C. Levy,et al.  Worst-case MSE precoder design for imperfectly known MIMO communications channels , 2005, IEEE Transactions on Signal Processing.

[14]  Gábor Pataki,et al.  On the Rank of Extreme Matrices in Semidefinite Programs and the Multiplicity of Optimal Eigenvalues , 1998, Math. Oper. Res..

[15]  Amir Beck,et al.  On the convexity of a class of quadratic mappings and its application to the problem of finding the smallest ball enclosing a given intersection of balls , 2007, J. Glob. Optim..

[16]  Shuzhong Zhang,et al.  New Results on Quadratic Minimization , 2003, SIAM J. Optim..

[17]  S. B. Atienza-Samols,et al.  With Contributions by , 1978 .

[18]  Amir Beck,et al.  Quadratic Matrix Programming , 2006, SIAM J. Optim..

[19]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[20]  Alexander I. Barvinok,et al.  A Remark on the Rank of Positive Semidefinite Matrices Subject to Affine Constraints , 2001, Discret. Comput. Geom..

[21]  Tamás Terlaky,et al.  A Survey of the S-Lemma , 2007, SIAM Rev..

[22]  Shuzhong Zhang,et al.  Complex Matrix Decomposition and Quadratic Programming , 2007, Math. Oper. Res..

[23]  Werner Rheinboldt,et al.  Computer Science and Scientific Computing , 1989 .

[24]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[25]  Henry Wolkowicz,et al.  The trust region subproblem and semidefinite programming , 2004, Optim. Methods Softw..

[26]  Henry Wolkowicz,et al.  Indefinite Trust Region Subproblems and Nonsymmetric Eigenvalue Perturbations , 1995, SIAM J. Optim..

[27]  J. J. Moré Generalizations of the trust region problem , 1993 .

[28]  G. Pataki The Geometry of Semidefinite Programming , 2000 .