Influence of the substrate temperature during deposition on film characteristics of copper phthalocyanine and field-effect transistor properties

In this paper, we employ different substrate temperatures during the deposition process and observe a highly ordered structure and strong orientation of copper phthalocyanine (CuPc) molecules on Si/SiO2 by using X-ray-diffraction and transmission electron microscopy analysis. The results show the effect of CuPc morphology at different substrate temperatures on the organic field-effect-transistor performance. When the substrate temperature for deposition of CuPc is 120 °C, a mobility of 3.75×10-3 cm2/V s can be obtained.

[1]  Kazuhiro Kudo,et al.  Schottky gate static induction transistor using copper phthalocyanine films , 1998 .

[2]  Gilles Horowitz,et al.  Temperature and gate voltage dependence of hole mobility in polycrystalline oligothiophene thin film transistors , 2000 .

[3]  R. Chaâbane,et al.  Transient behaviour of thin film transistors based on nickel phthalocyanine , 1995 .

[4]  Zhenan Bao,et al.  Organic field‐effect transistors with high mobility based on copper phthalocyanine , 1996 .

[5]  George G. Malliaras,et al.  Orientation of pentacene films using surface alignment layers and its influence on thin-film transistor characteristics , 2001 .

[6]  K. Kam,et al.  Organic-thin-film-induced molecular epitaxy from the vapor phase , 1991 .

[7]  Kuniaki Tanaka,et al.  Evaluation of Electrical Properties of Evaporated Thin Films of Metal-Free, Copper and Lead Phthalocyanines by In-Situ Field Effect Measurements , 1997 .

[8]  Andrew J. Lovinger,et al.  Morphological and Transistor Studies of Organic Molecular Semiconductors with Anisotropic Electrical Characteristics , 2001 .

[9]  Fuxi Gan,et al.  Application of phthalocyanine thin films in optical recording , 1995 .

[10]  Wolf-Joachim Fischer,et al.  Studies on phase transformations of Cu-phthalocyanine thin films , 2000 .

[11]  Ching Wan Tang,et al.  Organic electroluminescent devices with improved stability , 1996 .

[12]  Zhenan Bao,et al.  The Physical Chemistry of Organic Field-Effect Transistors , 2000 .

[13]  J. Simon,et al.  Transient properties of nickel phthalocyanine thin film transistors , 1994 .

[14]  B. Batlogg,et al.  Ambipolar pentacene field-effect transistors and inverters. , 2000, Science.

[15]  Zhenan Bao,et al.  New Air-Stable n-Channel Organic Thin Film Transistors , 1998 .

[16]  R. Resel,et al.  Preferred orientation of copper phthalocyanine thin films evaporated on amorphous substrates , 2000 .

[17]  Daoben Zhu,et al.  Organic field-effect transistors based on Langmuir–Blodgett films of substituted phthalocyanines , 2001 .

[18]  A. Dodabalapur,et al.  Intrinsic Transport Properties and Performance Limits of Organic Field-Effect Transistors , 1996, Science.

[19]  Daoben Zhu,et al.  The response mechanism of aminotri-tert-butylphthalocyanine thin films to nitrogen dioxide , 1998 .

[20]  P. Siciliano,et al.  Langmuir−Blodgett Multilayers Based on Copper Phthalocyanine as Gas Sensor Materials: Active Layer−Gas Interaction Model and Conductivity Modulation , 1997 .

[21]  M. Knupfer,et al.  Order on disorder: Copper phthalocyanine thin films on technical substrates , 2001 .

[22]  M. Komiyama,et al.  Preparation of highly ordered ultrathin films of copper(II) phthalocyanine on amorphous substrates by molecular beam deposition , 1987 .

[23]  M. Berggren,et al.  Conductivity-type anisotropy in molecular solids , 1997 .

[24]  A. Pauly,et al.  Interaction of NO2 with copper phthalocyanine thin films I: Characterization of the copper phthalocyanine films , 1992 .

[25]  B. Batlogg,et al.  Universal crossover from band to hopping conduction in molecular organic semiconductors. , 2001, Physical review letters.

[26]  N. Koch,et al.  Growth and preferred crystallographic orientation of hexaphenyl thin films , 1997 .

[27]  Yuh‐Lang Lee,et al.  Effects of substrate temperature on the film characteristics and gas-sensing properties of copper phthalocyanine films , 2001 .