A noise model for InSAR time series

Interferometric synthetic aperture radar (InSAR) time series methods estimate the spatiotemporal evolution of surface deformation by incorporating information from multiple SAR interferograms. While various models have been developed to describe the interferometric phase and correlation statistics in individual interferograms, efforts to model the generalized covariance matrix that is directly applicable to joint analysis of networks of interferograms have been limited in scope. In this work, we build on existing decorrelation and atmospheric phase screen models and develop a covariance model for interferometric phase noise over space and time. We present arguments to show that the exploitation of the full 3-D covariance structure within conventional time series inversion techniques is computationally challenging. However, the presented covariance model can aid in designing new inversion techniques that can at least mitigate the impact of spatial correlated nature of InSAR observations.

[1]  Jong-Sen Lee,et al.  Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery , 1994, IEEE Trans. Geosci. Remote. Sens..

[2]  James Foster,et al.  Mitigating atmospheric noise for InSAR using a high resolution weather model , 2005 .

[3]  T. Wright,et al.  Multi-interferogram method for measuring interseismic deformation: Denali Fault, Alaska , 2007 .

[4]  Richard Bamler,et al.  Phase statistics and decorrelation in SAR interferograms , 1993, Proceedings of IGARSS '93 - IEEE International Geoscience and Remote Sensing Symposium.

[5]  H. Zebker,et al.  Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos , 2007 .

[6]  Ramon F. Hanssen,et al.  Reliable estimation of orbit errors in spaceborne SAR interferometry , 2012, Journal of Geodesy.

[7]  Richard M. Goldstein,et al.  Atmospheric limitations to repeat‐track radar interferometry , 1995 .

[8]  Howard A. Zebker,et al.  Accurate estimation of correlation in InSAR observations , 2005, IEEE Geoscience and Remote Sensing Letters.

[9]  Heresh Fattahi,et al.  DEM Error Correction in InSAR Time Series , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[10]  A. Hooper Persistent scatter radar interferometry for crustal deformation studies and modeling of volcanic deformation , 2006 .

[11]  S. Jónsson,et al.  Modeling volcano and earthquake deformation from satellite radar interferometric observations , 2002 .

[12]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[13]  Rowena B. Lohman,et al.  Some thoughts on the use of InSAR data to constrain models of surface deformation: Noise structure and data downsampling , 2005 .

[14]  Marie-Pierre Doin,et al.  Improving InSAR geodesy using Global Atmospheric Models , 2014 .

[15]  Fred F. Pollitz,et al.  Coseismic Deformation From Earthquake Faulting On A Layered Spherical Earth , 1996 .

[16]  K. Feigl,et al.  The displacement field of the Landers earthquake mapped by radar interferometry , 1993, Nature.

[17]  Charles Werner,et al.  On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake , 1994 .

[18]  Andrew Hooper,et al.  A multi‐temporal InSAR method incorporating both persistent scatterer and small baseline approaches , 2008 .

[19]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[20]  N. Higham Computing the nearest correlation matrix—a problem from finance , 2002 .

[21]  Piyush Shanker Agram Persistent scatterer interferometry in naturalterrain , 2010 .

[22]  Richard M. Goldstein,et al.  Studies of multibaseline spaceborne interferometric synthetic aperture radars , 1990 .

[23]  R. Hanssen Radar Interferometry: Data Interpretation and Error Analysis , 2001 .

[24]  Fabio Rocca,et al.  Permanent scatterers in SAR interferometry , 1999, Remote Sensing.

[25]  Stefano Tebaldini,et al.  Hybrid CramÉr–Rao Bounds for Crustal Displacement Field Estimators in SAR Interferometry , 2007, IEEE Signal Processing Letters.

[26]  M. Simons,et al.  A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes , 2002, Nature.

[27]  Franz J. Meyer,et al.  A statistical model of ionospheric signals in low-frequency SAR data , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[28]  R. Bamler,et al.  Phase statistics of interferograms with applications to synthetic aperture radar. , 1994, Applied optics.

[29]  R. Hanssen Atmospheric heterogeneities in ERS tandem SAR interferometry , 1998 .

[30]  P. Rosen,et al.  Measurement and mitigation of the ionosphere in L-band Interferometric SAR data , 2010, 2010 IEEE Radar Conference.

[31]  Christophe Delacourt,et al.  Tropospheric corrections of SAR interferograms with strong topography. Application to Etna , 1998 .

[32]  Fabio Rocca,et al.  Modeling Interferogram Stacks , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[33]  Howard A. Zebker,et al.  Persistent scatterer selection using maximum likelihood estimation , 2007 .

[34]  L. Rivera,et al.  Coseismic Deformation from the 1999 Mw 7.1 Hector Mine, California, Earthquake as Inferred from InSAR and GPS Observations , 2002 .

[35]  H. Zebker,et al.  A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers , 2004 .

[36]  C. Werner,et al.  Radar interferogram filtering for geophysical applications , 1998 .

[37]  Gian Franco Sacco,et al.  InSAR Scientific Computing Environment , 2011 .

[38]  Heresh Fattahi,et al.  InSAR uncertainty due to orbital errors , 2014 .

[39]  Teng Wang,et al.  Repeat-Pass SAR Interferometry With Partially Coherent Targets , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[40]  Ian G. Cumming,et al.  Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation , 2005 .

[41]  Franz J. Meyer,et al.  A review of ionospheric effects in low-frequency SAR — Signals, correction methods, and performance requirements , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[42]  Virginie Pinel,et al.  Presentation Of The Small Baseline NSBAS Processing Chain On A Case Example: The ETNA Deformation Monitoring From 2003 to 2010 Using ENVISAT Data , 2011 .

[43]  M. Doin,et al.  Ground motion measurement in the Lake Mead area, Nevada, by differential synthetic aperture radar interferometry time series analysis: Probing the lithosphere rheological structure , 2007 .

[44]  Gianfranco Fornaro,et al.  A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms , 2002, IEEE Trans. Geosci. Remote. Sens..

[45]  M. Simons,et al.  A multiscale approach to estimating topographically correlated propagation delays in radar interferograms , 2010 .

[46]  Fred F. Pollitz,et al.  Mobility of continental mantle: Evidence from postseismic geodetic observations following the 1992 Landers earthquake , 2000 .

[47]  Paris W. Vachon,et al.  Coherence estimation for SAR imagery , 1999, IEEE Trans. Geosci. Remote. Sens..

[48]  Howard A. Zebker,et al.  Correction for interferometric synthetic aperture radar atmospheric phase artifacts using time series of zenith wet delay observations from a GPS network , 2006 .

[49]  Fabio Rocca,et al.  The wavenumber shift in SAR interferometry , 1994, IEEE Trans. Geosci. Remote. Sens..

[50]  David D. Parrish,et al.  NORTH AMERICAN REGIONAL REANALYSIS , 2006 .

[51]  Robert L. Broughton,et al.  Determinant and Exchange Algorithms for Observation Subset Selection , 2010, IEEE Transactions on Image Processing.

[52]  M. Doin,et al.  Ground motion measurement in the lake Mead area ( Nevada , USA ) , by DInSAR time series : probing the lithosphere rheological structure , 2006 .

[53]  Stanley J. Reeves,et al.  Sequential algorithms for observation selection , 1999, IEEE Trans. Signal Process..

[54]  E. Rodríguez,et al.  Theory and design of interferometric synthetic aperture radars , 1992 .

[55]  Antonio Pepe,et al.  SBAS-Based Satellite Orbit Correction for the Generation of DInSAR Time-Series: Application to RADARSAT-1 Data , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[56]  E. Chapin,et al.  Impact of the ionosphere on an L-band space based radar , 2006, 2006 IEEE Conference on Radar.

[57]  P. González,et al.  Error estimation in multitemporal InSAR deformation time series, with application to Lanzarote, Canary Islands , 2011 .

[58]  Sergey V. Samsonov,et al.  Topographic Correction for ALOS PALSAR Interferometry , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[59]  Claudio Prati,et al.  A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[60]  Yngvar Larsen,et al.  Detailed rockslide mapping in northern Norway with small baseline and persistent scatterer interferometric SAR time series methods. , 2010 .

[61]  C. W. Chen,et al.  Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[62]  Frank H. Webb,et al.  Neutral atmospheric delay in interferometric synthetic aperture radar applications: Statistical description and mitigation , 2003 .

[63]  Steffen Knospe,et al.  Covariance Estimation for dInSAR Surface Deformation Measurements in the Presence of Anisotropic Atmospheric Noise , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[64]  Marie-Pierre Doin,et al.  New Radar Interferometric Time Series Analysis Toolbox Released , 2013 .

[65]  Piyush Agram,et al.  Multiscale InSAR Time Series (MInTS) analysis of surface deformation , 2011 .

[66]  Kenneth W. Hudnut,et al.  Analysis of coseismic surface displacement gradients using radar interferometryc New insights into the Landers earthquake , 1994 .

[67]  Mike P. Stewart,et al.  A modification to the Goldstein radar interferogram filter , 2003, IEEE Trans. Geosci. Remote. Sens..

[68]  Marie-Pierre Doin,et al.  Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data , 2011 .