A Greedy Strategy for Coarse-Grid Selection

Efficient solution of the very large linear systems that arise in numerical modeling of real-world applications is often only possible through the use of multilevel techniques. While highly optimized algorithms may be developed using knowledge about the origins of the matrix problem to be considered, much recent interest has been in the development of purely algebraic approaches that may be applied in many situations, without problem-specific tuning. Here, we consider an algebraic approach to finding the fine/coarse partitions needed in multilevel approaches. The algorithm is motivated by recent theoretical analysis of the performance of two common multilevel algorithms, multilevel block factorization and algebraic multigrid. While no guarantee on the rate of coarsening is given, the splitting is shown to always yield an effective preconditioner in the two-level sense. Numerical performance of two-level and multilevel variants of this approach is demonstrated in combination with both algebraic multigrid and multilevel block factorizations, and the advantages of each of these two algorithmic settings are explored.

[1]  M. Tismenetsky,et al.  A new preconditioning technique for solving large sparse linear systems , 1991 .

[2]  Yousef Saad,et al.  Block LU Preconditioners for Symmetric and Nonsymmetric Saddle Point Problems , 2003, SIAM J. Sci. Comput..

[3]  Yousef Saad,et al.  Greedy Coarsening Strategies for Nonsymmetric Problems , 2007, SIAM J. Sci. Comput..

[4]  Thomas A. Manteuffel,et al.  An energy‐based AMG coarsening strategy , 2006, Numer. Linear Algebra Appl..

[5]  D FalgoutRobert An Introduction to Algebraic Multigrid , 2006 .

[6]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[7]  P. Vassilevski,et al.  ON GENERALIZING THE AMG FRAMEWORK , 2003 .

[8]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[9]  Thomas A. Manteuffel,et al.  Adaptive Algebraic Multigrid , 2005, SIAM J. Sci. Comput..

[10]  Hans De Sterck,et al.  Reducing Complexity in Parallel Algebraic Multigrid Preconditioners , 2004, SIAM J. Matrix Anal. Appl..

[11]  Thomas A. Manteuffel,et al.  Adaptive reduction‐based AMG , 2006, Numer. Linear Algebra Appl..

[12]  O. E. Livne,et al.  Coarsening by compatible relaxation , 2004, Numer. Linear Algebra Appl..

[13]  Yousef Saad,et al.  ARMS: an algebraic recursive multilevel solver for general sparse linear systems , 2002, Numer. Linear Algebra Appl..

[14]  R. P. Fedorenko The speed of convergence of one iterative process , 1964 .

[15]  Yvan Notay,et al.  Using approximate inverses in algebraic multilevel methods , 1998, Numerische Mathematik.

[16]  Yvan Notay,et al.  Algebraic multigrid and algebraic multilevel methods: a theoretical comparison , 2005, Numer. Linear Algebra Appl..

[17]  Randolph E. Bank,et al.  Hierarchical bases and the finite element method , 1996, Acta Numerica.

[18]  A. Brandt Algebraic multigrid theory: The symmetric case , 1986 .

[19]  David Zuckerman,et al.  On Unapproximable Versions of NP-Complete Problems , 1996, SIAM J. Comput..

[20]  Nicholas I. M. Gould,et al.  A numerical evaluation of HSL packages for the direct solution of large sparse, symmetric linear systems of equations , 2004, TOMS.

[21]  Tony F. Chan,et al.  An Energy-minimizing Interpolation for Robust Multigrid Methods , 1999, SIAM J. Sci. Comput..

[22]  StübenKlaus Algebraic multigrid (AMG) , 1983 .

[23]  Van Emden Henson,et al.  Robustness and Scalability of Algebraic Multigrid , 1999, SIAM J. Sci. Comput..

[24]  A. Brandt General highly accurate algebraic coarsening. , 2000 .

[25]  Richard Vynne Southwell,et al.  Stress-calculation in frameworks by the method of "systematic relaxation of constraints"—I and II , 1935, Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences.

[26]  Yousef Saad,et al.  ILUT: A dual threshold incomplete LU factorization , 1994, Numer. Linear Algebra Appl..

[27]  Oliver Bröker,et al.  Parallel multigrid methods using sparse apprpoximate inverses , 2003 .

[28]  Yousef Saad,et al.  Multilevel ILU With Reorderings for Diagonal Dominance , 2005, SIAM J. Sci. Comput..

[29]  R.D. Falgout,et al.  An Introduction to Algebraic Multigrid Computing , 2006, Computing in Science & Engineering.

[30]  Jinchao Xu,et al.  On an energy minimizing basis for algebraic multigrid methods , 2004 .

[31]  S. F. McCormick,et al.  Multigrid Methods for Variational Problems , 1982 .

[32]  V. E. Henson,et al.  BoomerAMG: a parallel algebraic multigrid solver and preconditioner , 2002 .