Electric-pulse-induced resistive switching and possible superconductivity in the Mott insulator GaTa4Se8

There is accumulated evidence today that an electric pulse can drastically modify the physical properties of correlated materials. An electric pulse was shown for example to induce an insulator-to-metal transition in manganites or in organic Mott insulators. We report here the first experimental evidence of a non-volatile electric pulse-induced insulator-to-metal transition and possible superconductivity in the Mott insulator GaTa"4Se"8. This resistive switching is concomitant to an electronic phase separation induced by the pulse. This phenomena most probably differs from the thermal, electronic injection or ionic diffusion processes explaining the resistive switching in materials foreseen for non-volatile memory (RRAM) applications.

[1]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[2]  M. Karpovsky,et al.  INSULATOR-SUPERCONDUCTOR TRANSITION IN 3D GRANULAR AL-GE FILMS , 1997 .

[3]  K. Müller,et al.  Possible highTc superconductivity in the Ba−La−Cu−O system , 1986 .

[4]  H. Kuwahara,et al.  Current switching of resistive states in magnetoresistive manganites , 1997, Nature.

[5]  O. Chauvet,et al.  Dielectric breakdown and current switching effect in the incommensurate layered compound(LaS)1.196VS2 , 2006 .

[6]  Tokura,et al.  Current-induced insulator-metal transition and pattern formation in an organic charge-transfer complex , 1999, Science.

[7]  B. Delley,et al.  Role of Oxygen Vacancies in Cr‐Doped SrTiO3 for Resistance‐Change Memory , 2007, 0707.0563.

[8]  T. Tiefel,et al.  Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films , 1994, Science.

[9]  K. Efetov,et al.  Coulomb effects in granular materials at not very low temperatures , 2003, cond-mat/0302257.

[10]  Daniel Braithwaite,et al.  Electric‐Pulse‐driven Electronic Phase Separation, Insulator–Metal Transition, and Possible Superconductivity in a Mott Insulator , 2008, Advanced materials.

[11]  Masatoshi Imada,et al.  Metal-insulator transitions , 1998 .

[12]  S. Q. Liu,et al.  Electric-pulse-induced reversible resistance change effect in magnetoresistive films , 2000 .

[13]  O. Chauvet,et al.  Determination of the modulated structure of the misfit layer compound (LaS)1.196VS2 , 2005 .

[14]  C. Gerber,et al.  Reproducible switching effect in thin oxide films for memory applications , 2000 .

[15]  I. Bizjak,et al.  Measurement of the wrong-sign decays D0 --> K+ pi- pi0 and D0 --> K+ pi- pi+ pi-, and search for CP violation. , 2005, Physical review letters.

[16]  D. Johrendt,et al.  Crystal structures, electronic properties, and pressure-induced superconductivity of the tetrahedral cluster compounds GaNb(4)S(8), GaNb(4)Se(8), and GaTa(4)Se(8). , 2005, Journal of the American Chemical Society.

[17]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[18]  M. Sergent,et al.  Nouveaux chalcogenures mixtesGaMo4(XX′)8 (X =S, Se, Te)a`clusters tetraedriques Mo4 , 1984 .

[19]  M. Lankhorst,et al.  Low-cost and nanoscale non-volatile memory concept for future silicon chips , 2005, Nature materials.

[20]  Y. Tokura,et al.  Dielectric Breakdown of the Insulating Charge-Ordered State in La 2-x Sr x NiO 4 , 1999 .

[21]  M. Rozenberg,et al.  Nonvolatile memory with multilevel switching: a basic model. , 2004, Physical review letters.

[22]  S. Yasuda,et al.  Nonpolar resistance switching of metal/binary-transition-metal oxides/metal sandwiches: Homogeneous/inhomogeneous transition of current distribution , 2007, cond-mat/0702564.

[23]  S. O. Park,et al.  Electrical observations of filamentary conductions for the resistive memory switching in NiO films , 2006 .

[24]  D. Khomskii,et al.  Transition from Mott insulator to superconductor in GaNb4Se8 and GaTa4Se8 under high pressure. , 2004, Physical review letters.

[25]  R. Waser,et al.  Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.