Three-dimensional effects in trailing mass in the wire-array Z pincha)

The implosion phase of a wire-array Z pinch is investigated using three-dimensional (3D) simulations, which model the mass ablation phase and its associated axial instability using a mass injection boundary condition. The physical mechanisms driving the trailing mass network are explored, and it is found that in 3D the current paths though the trailing mass can reduce bubble growth on the imploding plasma sheath, relative to the 2D (r,z) equivalent. Comparison between the simulations and a high quality set of experimental radiographs is presented.

[1]  J. Chittenden,et al.  Implosion and stagnation of wire array Z pinchesa) , 2006 .

[2]  J. Chittenden,et al.  Jet Deflection via Crosswinds: Laboratory Astrophysical Studies , 2004, astro-ph/0402111.

[3]  R. G. Adams,et al.  Pulsed-power-driven high energy density physics and inertial confinement fusion research , 2004 .

[4]  S. Kirkpatrick Percolation and Conduction , 1973 .

[5]  K. H. Kwek,et al.  Effect of discrete wires on the implosion dynamics of wire array Z pinches , 2001 .

[6]  M. Cuneo,et al.  Equilibrium flow structures and scaling of implosion trajectories in wire array Z pinches , 2004 .

[7]  C. Jennings,et al.  X-ray generation mechanisms in three-dimensional simulations of wire array Z-pinches , 2004 .

[8]  Gordon Andrew Chandler,et al.  Compact single and nested tungsten-wire-array dynamics at 14–19MA and applications to inertial confinement fusiona) , 2006 .

[9]  A. Haboub,et al.  Dynamics of mass transport and magnetic fields in low-wire-number-array Z pinches. , 2006, Physical review letters.

[10]  M. Cuneo,et al.  Steady-state radiation ablation in the wire-array Z pinch , 2007 .

[11]  D. Ryutov,et al.  The physics of fast Z pinches , 1998 .

[12]  C. Jennings,et al.  Physics of wire array Z-pinch implosions: experiments at Imperial College , 2005 .

[13]  Allen C. Robinson,et al.  Self-consistent, two-dimensional, magnetohydrodynamic simulations of magnetically driven flyer plates , 2003 .

[14]  M. Haines Energy transfer to a wire from a surrounding Joule-heated corona , 2003 .

[15]  Mosher,et al.  Improved Symmetry Greatly Increases X-Ray Power from Wire-Array Z-Pinches. , 1996, Physical review letters.

[16]  C. Coverdale,et al.  Optimal wire-number range for high x-ray power in long-implosion-time aluminum Z pinches. , 2002, Physical review letters.

[17]  G. Chandler,et al.  Tungsten wire number dependence of the implosion dynamics at the Z-accelerator , 2005 .

[18]  G. Chandler,et al.  Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ , 1998 .

[19]  G. R. Bennett,et al.  Characteristics and scaling of tungsten-wire-array z -pinch implosion dynamics at 20 MA. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  R. Lemke,et al.  Wire array implosion characteristics from determination of load inductance on the Z pulsed-power accelerator , 2004 .

[21]  G. M. Oleinik,et al.  Dynamics of Heterogeneous Liners with Prolonged Plasma Creation , 2001 .

[22]  M. Cuneo,et al.  A model for ablated-plasma distribution and width for wire-array Z-pinch implosions , 2006 .

[23]  R. G. Adams,et al.  Radiation symmetry control for inertial confinement fusion capsule implosions in double Z-pinch hohlraums on Z , 2003 .

[24]  R. G. Adams,et al.  Symmetric inertial confinement fusion capsule implosions in a high-yield-scale double-Z-pinch-driven hohlraum on Z , 2003 .

[25]  D. Bliss,et al.  Progress in z-pinch driven dynamic-hohlraums for high-temperature radiation-flow and ICF experiments at Sandia National Laboratories , 2004 .

[26]  Kenneth W. Struve,et al.  Enhancement of X-Ray Power from a Z Pinch Using Nested-Wire Arrays , 1998 .

[27]  G. R. Bennett,et al.  Dynamic hohlraum driven inertial fusion capsules , 2002 .

[28]  D. S. Bailey,et al.  High yield inertial confinement fusion target design for a z-pinch-driven hohlraum , 1999 .

[29]  J. Kress,et al.  Electrical conductivity for warm, dense aluminum plasmas and liquids. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  S. Slutz,et al.  Hot dense capsule-implosion cores produced by Z-pinch dynamic Hohlraum radiation. , 2003, Physical review letters.

[31]  M. Isichenko Percolation, statistical topography, and transport in random media , 1992 .

[32]  Haines,et al.  Effect of core-corona plasma structure on seeding of instabilities in wire array Z pinches , 2000, Physical review letters.

[33]  D. Bliss,et al.  Mass-profile and instability-growth measurements for 300-wire Z-pinch implosions driven by 14-18 MA. , 2004, Physical review letters.

[34]  D. Bliss,et al.  Measurements of the mass distribution and instability growth for wire-array Z-pinch implosions driven by 14-20 MAa) , 2004 .

[35]  D. Bliss,et al.  Multi-dimensional high energy density physics modeling and simulation of wire array Z-pinch physics , 2004 .

[36]  N. N. Komarov,et al.  Current-induced implosion of a multiwire array as a radial plasma rainstorm , 2003 .

[37]  Allen C. Robinson,et al.  Three-dimensional z-pinch wire array modeling with ALEGRA-HEDP , 2003, Comput. Phys. Commun..

[38]  M. Knudson,et al.  Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 GPa. , 2003, Physical review letters.

[39]  J. Chittenden,et al.  Measurement and modeling of the implosion of wire arrays with seeded instabilities , 2005 .

[40]  R. Lemke,et al.  Radiation energetics of inertial confinement fusion relevant wire-array z pinches , 2007 .

[41]  E. Yu,et al.  One-dimensional ablation in multiwire arrays. , 2008 .