The early stop heuristic: A new convergence criterion for K-means
暂无分享,去创建一个
Adriana Mexicano | Ricardo Rodriguez | Salvador Cervantes | P. Montes | M. A. Jiménez | N. Almanza | A. Abrego
[1] Joaquín Pérez Ortega,et al. Early Classification: A New Heuristic to Improve the Classification Step of K-Means , 2013, SBBD.
[2] Wesam M. Ashour,et al. Initializing K-Means Clustering Algorithm using Statistical Information , 2011 .
[3] Christopher J. Merz,et al. UCI Repository of Machine Learning Databases , 1996 .
[4] Wesam M. Ashour,et al. Efficient and Fast Initialization Algorithm for K- means Clustering , 2012 .
[5] Stephen J. Redmond,et al. A method for initialising the K-means clustering algorithm using kd-trees , 2007, Pattern Recognit. Lett..
[6] Huma Javed,et al. Enhanced K-Mean Clustering Algorithm to Reduce Number of Iterations and Time Complexity , 2012 .
[7] Johan A. K. Suykens,et al. Optimized Data Fusion for Kernel k-Means Clustering , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[8] J. MacQueen. Some methods for classification and analysis of multivariate observations , 1967 .
[9] Junjie Wu,et al. Advances in K-means clustering: a data mining thinking , 2012 .
[10] Joaquín Pérez Ortega,et al. Improving the Efficiency and Efficacy of the K-means Clustering Algorithm Through a New Convergence Condition , 2007, ICCSA.
[11] Chun Sheng Li,et al. Cluster Center Initialization Method for K-means Algorithm Over Data Sets with Two Clusters , 2011 .
[12] Abdel-Badeeh M. Salem,et al. An efficient enhanced k-means clustering algorithm , 2006 .