Beyond the Fontaine-Wintenberger theorem

Given a perfectoid field, we find an elementary extension and a henselian defectless valuation on it, whose value group is divisible and whose residue field is an elementary extension of the tilt. This specializes to the almost purity theorem over perfectoid valuation rings and Fontaine-Wintenberger. Along the way, we prove an Ax-Kochen/Ershov principle for certain deeply ramified fields, which also uncovers some new model-theoretic phenomena in positive characteristic. Notably, we get that the perfect hull of $\mathbb{F}_p(t)^h$ is an elementary substructure of the perfect hull of $\mathbb{F}_p(\!(t)\!)$.

[1]  Itay Kaplan,et al.  SATURATED MODELS FOR THE WORKING MODEL THEORIST , 2021, The Bulletin of Symbolic Logic.

[2]  F. Kuhlmann,et al.  The valuation theory of deeply ramified fields and its connection with defect extensions , 2018, Transactions of the American Mathematical Society.

[3]  Daniel Murfet,et al.  Abelian Categories , 2006 .

[4]  Shinnosuke Ishiro,et al.  Another proof of the almost purity theorem for perfectoid valuation rings , 2020, Journal of Pure and Applied Algebra.

[5]  Einzelwerken Muster,et al.  Invent , 2021, Encyclopedic Dictionary of Archaeology.

[6]  Konstantinos Kartas,et al.  Decidability via the tilting correspondence , 2020, Algebra & Number Theory.

[7]  P. Scholze Perfectoid Spaces , 2011, Berkeley Lectures on p-adic Geometry.

[8]  Sylvy Anscombe,et al.  Characterizing NIP henselian fields , 2019, 1911.00309.

[9]  Geoffrey D. Dietz,et al.  Big Cohen-Macaulay and seed algebras in equal characteristic zero via ultraproducts , 2016, Journal of Commutative Algebra.

[10]  Sylvy Anscombe,et al.  NOTES ON EXTREMAL AND TAME VALUED FIELDS , 2014, The Journal of Symbolic Logic.

[11]  Alexander Bertoloni Meli,et al.  p-divisible groups , 2016 .

[12]  Will Johnson,et al.  Fun with Fields , 2016 .

[13]  K. Kedlaya,et al.  Relative P-adic Hodge Theory: Foundations , 2013, 1301.0792.

[14]  M. Rossberg,et al.  The Bulletin of Symbolic Logic , 2015 .

[15]  P. Scholze Perfectoid Spaces and their Applications , 2014 .

[16]  F. Kuhlmann The algebra and model theory of tame valued fields , 2013, 1304.0194.

[17]  P. Scholze Perfectoid Spaces: A survey , 2013, 1303.5948.

[18]  M. Fontana,et al.  Commutative Algebra: Noetherian and non-Noetherian Perspectives , 2011 .

[19]  F. Kuhlmann The defect , 2010, 1004.2135.

[20]  R. Cluckers,et al.  Constructible motivic functions and motivic integration , 2004, math/0410203.

[21]  Rune B. Lyngsø,et al.  Lecture Notes I , 2008 .

[22]  O. Gabber,et al.  Foundations for almost ring theory -- Release 7.5 , 2004, math/0409584.

[23]  O. Gabber,et al.  Almost ring theory , 2000, math/0002064.

[24]  M. Marshall,et al.  Valuation Theory and Its Applications, Volume II , 2003 .

[25]  Thomas Scanlon,et al.  Quantifier Elimination for the Relative Frobenius , 2000 .

[26]  J. Denef,et al.  Definable sets, motives and p-adic integrals , 1999, math/9910107.

[27]  Takuya Kon-no,et al.  Transactions of the American Mathematical Society , 1996 .

[28]  R. Lathe Phd by thesis , 1988, Nature.

[29]  Lou van den Dries,et al.  Decidability and undecidability theorems for PAC-fields , 1981 .

[30]  Guy Terjanian Formes p-adiques anisotropes. , 1980 .

[31]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[32]  S. Kochen,et al.  Diophantine Problems Over Local Fields I , 1965 .

[33]  Abraham Robinson,et al.  Elementary properties of ordered abelian groups , 1960 .

[34]  D. Prowe Berlin , 1855, Journal of public health, and sanitary review.