Concurrence of three Jaynes–Cummings systems

We apply genuine multipartite concurrence to investigate entanglement properties of three Jaynes–Cummings systems. Three atoms are initially put in GHZ-like state and locally interact with three independent cavities, respectively. We present analytical concurrence expressions for various subsystems including three-atom, three-cavity and some atom-cavity mixed systems. We also examine the global system and illustrate the evolution of its concurrence. Except for the sudden death of entanglement, we find for some initial entanglement parameter $$\theta $$θ, the concurrence of the global system may maintain unchanged in some time intervals.

[1]  M. F. Cornelio Multipartite monogamy of the concurrence , 2013, 1302.1179.

[2]  J. H. Eberly,et al.  Genuinely multipartite concurrence of N -qubit X matrices , 2012, 1208.2706.

[3]  N. An,et al.  Entanglement dynamics for a six-qubit model in cavity QED , 2008 .

[4]  W. Wootters,et al.  Distributed Entanglement , 1999, quant-ph/9907047.

[5]  T. Yu,et al.  Finite-time disentanglement via spontaneous emission. , 2004, Physical review letters.

[6]  Multipartite Entanglement and Quantum State Exchange , 2002, quant-ph/0208098.

[7]  B. D. Clader,et al.  Jaynes–Cummings theory out of the box , 2013 .

[8]  Florian Mintert,et al.  Measuring multipartite concurrence with a single factorizable observable. , 2006, Physical review letters.

[9]  Peter J. Love,et al.  A Characterization of Global Entanglement , 2007, Quantum Inf. Process..

[10]  Simone Severini,et al.  Improved lower bounds on genuine-multipartite-entanglement concurrence , 2012, 1205.3057.

[11]  E. Jaynes,et al.  Comparison of quantum and semiclassical radiation theories with application to the beam maser , 1962 .

[12]  Andreas Buchleitner,et al.  Decoherence and multipartite entanglement. , 2004, Physical review letters.

[13]  M. Kus,et al.  Concurrence of mixed multipartite quantum States. , 2004, Physical review letters.

[14]  Jing-Ling Chen,et al.  Measure of genuine multipartite entanglement with computable lower bounds , 2011, 1101.2001.

[15]  P. Horodecki,et al.  No-local-broadcasting theorem for multipartite quantum correlations. , 2007, Physical review letters.

[16]  V. Vedral Modern foundations of quantum optics , 2005 .

[17]  Dong Wang,et al.  Exploration quantum steering, nonlocality and entanglement of two-qubit X-state in structured reservoirs , 2017, Scientific Reports.

[18]  W. Qiang,et al.  Geometric quantum discord of a Jaynes–Cummings atom and an isolated atom , 2015, 1504.08253.

[19]  Dong Wang,et al.  Recovering the lost steerability of quantum states within non-Markovian environments by utilizing quantum partially collapsing measurements , 2017, 1709.05922.

[20]  J. Eberly,et al.  Pairwise concurrence dynamics: a four-qubit model , 2007, quant-ph/0701111.

[21]  Dong Wang,et al.  Enhancement of multipartite entanglement in an open system under non-inertial frames , 2017, Quantum Inf. Process..

[22]  Jing Ma,et al.  Entanglement Dynamics Between Two Atoms Within Different W-like Initial States , 2014 .

[23]  Marcus Huber,et al.  Detection of high-dimensional genuine multipartite entanglement of mixed states. , 2009, Physical review letters.

[24]  G. Milburn,et al.  Universal state inversion and concurrence in arbitrary dimensions , 2001, quant-ph/0102040.

[25]  Yihang Nie,et al.  Time evolution and transfer of entanglement between an isolated atom and a Jaynes–Cummings atom , 2007 .

[26]  Ross D. Hoehn,et al.  Entropic uncertainty relations for Markovian and non-Markovian processes under a structured bosonic reservoir , 2017, Scientific Reports.

[27]  T. Yu,et al.  Sudden death of entanglement of two Jaynes–Cummings atoms , 2006, quant-ph/0602206.

[28]  Xianqing Li-Jost,et al.  Genuine multipartite entanglement detection and lower bound of multipartite concurrence , 2015, 1512.08845.