Output regulation for linear distributed-parameter systems using finite-dimensional dual observers

In this article, the solution of the output regulation problem is considered for linear infinite-dimensional systems where the outputs to be controlled cannot be measured. It is shown that this problem can be solved by a finite-dimensional dual observer that is directly implementable so that the separation principle can be applied for the stabilization as in finite dimensions. A parametric design of these dual observers is proposed for Riesz-spectral systems that allows to achieve a low controller order and a desired control performance for the closed-loop system. The presented results are illustrated by determining a finite-dimensional regulator for an Euler-Bernoulli beam with Kelvin-Voigt damping that achieves tracking for steplike reference inputs and that asymptotically rejects sinusoidal disturbances.

[1]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[2]  C. D. Johnson,et al.  Accomodation of external disturbances in linear regulator and servomechanism problems , 1971 .

[3]  Johannes Schumacher,et al.  Finite-dimensional regulators for a class of infinite-dimensional systems , 1983 .

[4]  Eero Immonen,et al.  State Space Output Regulation Theory for Infinite-Dimensional Linear Systems and Bounded Uniformly Continuous Exogenous Signals , 2006 .

[5]  D. Luenberger An introduction to observers , 1971 .

[6]  B. Francis The linear multivariable regulator problem , 1976, 1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes.

[7]  Jun-Min Wang,et al.  A Riesz Basis Methodology for Proportional and Integral Output Regulation of a One-Dimensional Diffusive-Wave Equation , 2008, SIAM J. Control. Optim..

[8]  W. Wonham,et al.  The internal model principle for linear multivariable regulators , 1975 .

[9]  E. Davison The robust control of a servomechanism problem for linear time-invariant multivariable systems , 1976 .

[10]  A. Isidori,et al.  Topics in Control Theory , 2004 .

[11]  Christopher I. Byrnes,et al.  Output regulation for linear distributed parameter systems , 2000, IEEE Trans. Autom. Control..

[12]  Joachim Deutscher,et al.  A parametric approach to finite-dimensional control of linear distributed-parameter systems , 2010, Int. J. Control.

[13]  Seppo Pohjolainen,et al.  Internal Model Theory for Distributed Parameter Systems , 2010, SIAM J. Control. Optim..

[14]  Timo Hämäläinen,et al.  A finite-dimensional robust controller for systems in the CD-algebra , 2000, IEEE Trans. Autom. Control..

[15]  Richard Rebarber,et al.  Internal model based tracking and disturbance rejection for stable well-posed systems , 2003, Autom..

[16]  G. Lumer,et al.  Linear operator equations , 1959 .

[17]  Seppo Pohjolainen Robust multivariable PI-controller for infinite dimensional systems , 1982 .

[18]  Eero Immonen,et al.  A Simple Robust Controller for the Approximate Regulation of Almost Periodic Signals for Linear Systems , 2007, IEEE Transactions on Automatic Control.

[19]  M. Balas Active control of flexible systems , 1978 .

[20]  David S. Gilliam,et al.  6. Geometric Theory of Output Regulation for Linear Distributed Parameter Systems , 2003 .